This study analyzes the perception of university students regarding the use of virtual reality (VR) in higher education, focusing on their level of knowledge, usage, perceived advantages and disadvantages, as well as their willingness to use this technology in the future. Using a mixed-methods approach that combines questionnaires and semi-structured interviews, both quantitative and qualitative data were collected to provide a comprehensive view of the subject. The results indicate that while students have a basic understanding of VR, its use in the educational context is limited. A considerable number of students recognize VR’s potential to enhance the learning experience, particularly in terms of immersion and engagement. However, significant barriers to adoption were identified, such as technical issues, the high cost of equipment, and inadequate access to technological infrastructure. Additionally, there is a need for broader training for both students and faculty to ensure the effective use of this technology in academic environments. The semi-structured interviews confirmed that perceptions of VR vary depending on prior exposure to the technology and access to resources. Despite the challenges, most students appreciate VR’s potential to enrich learning, although its effective adoption will depend on overcoming the identified barriers. The study concludes that strategies must be implemented to facilitate the integration of VR into higher education, thus optimizing its impact on the teaching-learning process.
With the in-depth development and widespread application of educational informatization, digital education has also become one of the important features of educational modernization. Designing and completing a visual teaching system based on Web technology is of great significance for promoting further reform and development of teaching, especially for achieving remote education, which has great application value. Based on visual teaching needs analysis and B/S architecture, effective system development is achieved through Access database. According to the specific needs of teaching functions, the system can be divided into multiple modules, and the management and login of teaching resources for users can also be smoothly achieved. This has important research value for achieving the goal of remote visualization of teaching.
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
Despite the surge of publication of chatbots in the recent years in the field of education, we have little to know how this area has been researched so far, and the metrics of this type of research is still not known. To address such gap, this article offers a descriptive bibliometric study of chatbot research in education, aiming at presenting bibliometric analysis on articles on chatbots in education that were published in journals indexed in the Web of Science (WOS) database specifically Social Science Citation Index (SSCI) and Science Citation Index Expanded (SCIE) between 2016 and 2023. Descriptive bibliometric analysis was used to examine the data gathered from the chosen publications. including the annual number of articles and citations, the most productive author, countries with the highest publication output, productive affiliations, funding organizations, and publication sources. The bulk of the articles on chatbots in education, according to our dataset, were published between 2016 and 2023. The United States of America tops the list of countries regarding research productivity. The United Kingdom and China were ranked as most second and third productive countries, in terms of publication outputs. “Luke Kutszik Fryer emerged as the most productive author in this research domain in terms of the number of publications.” The University of Hong Kong had the highest number of publications among affiliations, indicating their significant contribution to the field. Additionally, the journal “Computers in Human Behavior” stood out with the highest number of publications per year, highlighting its relevance in publishing research on chatbots in education. This research offers valuable insights and a roadmap for prospective researchers, pinpointing critical areas where success can be attained in the study of chatbots in education.
The quest for quality postgraduate research productivity through education is on the increase. However, in the context of the African society, governance structures and policies seem to be impacting on the quality level of the provided education. Hence, this conceptual study explored the roles of governance structures and policies in enhancing and ensuring quality postgraduate education programmers in African institutions of higher learning. To this end, various relevant literature was reviewed. The findings showed amongst others that governance structures and policies affect the quality of education provided. Meanwhile, other factors such as curriculum, foreign influence, lack of resources, training, amongst others contribute to the quality of education provided. The study concludes that there is need for the current structures of governance and the designed and implemented policies for postgraduate education to be reviewed and adjusted towards ensuring the desired transformation.
Sustainability has become increasingly important in recent decades and has become a key concept in various areas of society. The early integration of sustainability principles into education is of crucial importance, as the elementary school years represent a decisive phase in children's development. During this phase, fundamental values, attitudes, and behaviors are formed that will have a significant impact on later lives and the relationship with the environment. Elementary school offer a unique opportunity to reach people from different social backgrounds and thus impart a common basic knowledge that can serve as a basis for shaping a sustainable society. Elementary schools are therefore an ideal place to introduce children to the principles of sustainability and sensitize them to the challenges of the 21st century. The aim of the study is to explore the current state of sustainability education in elementary school. It takes a closer look at whether elementary school students are old enough to be confronted with sustainability, what methods already exist and what the challenges are in implementing sustainability education. The basis for the study is an online survey conducted at 60 different elementary school in the state of Baden-Wuerttemberg in Germany. In conclusion, while there is room for improvement, the survey results suggest a growing awareness of the significance of sustainability education in elementary schools. The findings call for targeted efforts to enhance curriculum integration, teacher training, and resource provision to promote a more sustainable and environmentally conscious generation of students in Baden-Wuerttemberg.
Copyright © by EnPress Publisher. All rights reserved.