In this paper, the pollination and biology of apricot in Hongfeng and New Century were studied. The results are as follows: (1) The est pollination with the red variety is early, new century's best pollinating varieties is camel yellow. (2) The flowering period of different cultivars was different, and the flowering period of Hongfeng and other varieties was 3 - 7 days later than that of Baxing water apricot and other varieties, which provided germplasm for further breeding of late flowering varieties. (3) Hongfeng, the new century and other varieties of self-flowering rate of 0 - 3.61% range, is self-incompatible varieties. (4) The pollen germination rate of different cultivars was higher than 50%, which indicated that the pollen was mature and the fertility was strong, and the reason of low percentage of self-pollination was pollen abortion, the main reason was self and so on.
The need for global energy conservation has become more urgent because of the negative effects of excessive energy use, such as higher fuel consumption, greater environmental pollution, and depletion of the ozone layer. There has been a significant increase in the demand for central and high-capacity household air conditioning systems in Muscat in recent years. The need for this is influenced by factors such as arid climate, increasing temperatures, air pollution, and population increase. As a result, there has been a significant increase in electricity use, putting a strain on power resources. To tackle this difficulty, the incorporation of solar collectors as supplementary thermal compressors in air conditioning systems offers a chance to utilise renewable energy sources. The objective of this hybrid technique is to enhance the effectiveness of cooling systems, hence minimising the need for electricity and lowering the release of environmental pollutants.
The interest in smart grids and new technologies is growing around the world. Countries are investing in the development of new technologies that will help achieve environmental goals, energy supply efficiency, improve energy efficiency and increase consumer involvement in the energy generation. One of such technology is a blockchain. It is believed that the blockchain, combined with a smart grid, provides an opportunity to integrate the activities of all stakeholders, including: generators, distributors and consumers of electricity. The aim of the article is to identify the key research areas discussed by the researchers of both the smart grid and the blockchain issues. An analysis of the Scopus database from 2015 to 2023 was conducted. Using a created bibliometric query, a systematic literature review was conducted. 476 scientific publications relating to the issues addressed were identified. Using the VOSviewer software, a bibliometric analysis was performed using the author’s keywords. The bibliometric maps obtained allowed for the identification of key research areas. The article also presents potential future directions of scientific considerations, which should be focused on the issue of green smart grid and green blockchain. The results presented in the article can inspire researchers looking for research gaps or describing the current state of knowledge in the field of the smart grid and the blockchain issues.
Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert agriculture.
Copyright © by EnPress Publisher. All rights reserved.