This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
This study evaluated the efficiency and productivity of the manufacturing industries of Singapore. Singapore is one of the world’s most competitive countries and manufacturing giants. All 21 manufacturing industries as classified by Singapore’s Department of Statistics were included in the study as decision-making units (DMUs). Using the Malmquist DEA on data spanning 2015–2021, we found that excerpt for the Paper and Paper product industry, all industries recorded positive total factor productivity (TFP). TFP ranged from 0.977 to 1.481. In terms of technical efficiency, 14 out of 21 industries showed positive efficiency change. The highest TFP was recorded in 2020 and the lowest in 2016. By measuring and improving efficiency, industries in Singapore can achieve cost savings, increase output, and enhance their competitiveness in the global marketplace. In addition, efficiency measurement can help policymakers identify potential areas for improvement and develop targeted policies to promote sustainable economic growth. Given these benefits, performance measurement is inevitable for industries and policymakers in Singapore to achieve economic objectives. Manufacturing industries need to find ways to manage the size and scale of operations as we flag this as an area for improvement.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Participation in the implementation of green values that are becoming a global norm often experiences challenges. In response with trends of social media use, a study of barriers to green product purchase intention among social media users is conducted. By descriptive qualitative approach, three keywords are employed, namely: (1) “barriers to green consumption”; (2) “barriers of purchase intention; and (3) “social media use and barriers to green consumption”. The findings reveal: (1) the study of barriers to green product purchase intention among social media users has been gaining importance for future research; (2) the potential future research area includes: (a) the level of belief in green products purchase intention that explains the rationalization of green consumption (green knowledge); and (b) the use of digital media through the role of social media in promoting green consumption (green promotion). The theoretical implication emphasizes contribution to the theory of sustainable marketing, namely barriers as dynamics of market interactivity that are capable of generating responsiveness leading to business competitiveness. While practical implication is shown in business efforts to transform challenges into opportunity.
This study investigates the impact of toll road construction on 59 micro, small, and medium enterprises in Kampar, Pekanbaru, and Dumai cities. The research aims to analyze the economic and environmental effects of infrastructure expansion on businesses’ profitability and sustainability, providing insights for policymakers and stakeholders to develop mitigation strategies to support MSMEs amidst ongoing infrastructure development. Structural equation modeling, spatial environmental impact analysis, and qualitative data analysis using five-level qualitative data analysis (FL-QDA) were all used together in a mixed-methods approach. Data collection involved observations, interviews, questionnaires, and geospatial analysis, including the use of a Geo-Information System (GIS) supported by drone reconnaissance to map affected areas. The study revealed that the toll roads significantly enhanced connectivity and economic growth but also negatively impacted local economies (β = 0.32, R2 = 0.60, P-value ≤ 0.05). and the environment (β = 0.34, P-value ≤ 0.05), as 49% of respondents experienced a 50% decrease in profitability. To mitigate the risk of impact, policymakers should prioritize the principle of prudence to evaluate the significance of mitigation policy implementation (β = 0.144, P-value ≥ 0.05). In a nutshell, toll road construction significantly impacts MSMEs’ business continuity, necessitating an innovative strategy involving monitoring and participatory approaches to mitigate risk.
This study aims to explore the asymmetric impact of renewable energy on the sectoral output of the Indian economy by analyzing the time series data from 1971 to 2019. The nonlinear autoregressive distributed lag approach (NARDL) is employed to examine the short- and long-run relationships between the variables. Most studies focus on economic growth, ignoring sectoral dynamics. The result shows that the sectoral output shows a differential dynamism with respect to the type of energy source. For instance, agricultural output responds positively to the positive shock in renewable energy, whereas industry and service output behave otherwise. Since the latter sectors depend heavily on non-renewable energy sources, they behave positively towards them. Especially, electricity produced from non-renewable energy sources significantly influences service sector output. However, growing evidence across the world is portraying the strong relationship between the growth of renewable energy sources and economic growth. However sectoral dynamism is crucial to frame specific policies. In this regard, the present paper’s result indicates that policies related to promoting renewable energy sources will significantly influence sectoral output in the long run in India.
Copyright © by EnPress Publisher. All rights reserved.