Ancestral knowledge is essential in the construction of learning to preserve the sense of relevance, transmit and share knowledge according to its cultural context, and maintain a harmonious relationship with nature and sustainability. The objective of this research is to study and analyze the management of ancestral knowledge in the production of the Raicilla to provide elements to rural communities, producers, and facilitators in decision-making to be able to innovate and be more productive, competitive, sustainable, and improve people’s quality of life. The methodological strategy was carried out through Bayesian networks and Fuzzy Logic. To this end, a model was developed to identify and quantify the critical factors that impact optimally managed technology to generate value that translates into innovation and competitive advantages. The evidence shows that the optimal and non-optimal management of knowledge, technology, and innovation management and its factors, through the causality of the variables, permits us to capture the interrelationship more adequately and manage them. The results show that the most relevant factors for adequate management of ancestral knowledge in the Raicilla sector are facilitators, denomination of origin, extraction and fermentation, and government. The proposed model will support these small producers and help them preserve their identity, culture, and customs, contributing greatly to environmental sustainability.
This study aims to develop and validate a strategic model tailored to the unique challenges and contexts faced by micro, small, and medium-sized enterprises (MSMEs) in Ecuador, enhancing their operational efficiency and access to financing. Employing a quantitative approach, the research utilized a non-experimental, cross-sectional design to gather data from a sample of 358 companies. The study revealed that MSMEs are significantly hindered by limited access to financing, lack of managerial skills, and technological gaps. Despite these challenges, MSMEs demonstrated considerable adaptability and resilience, underscoring their critical role in the local economy. The strategic model proposed leverages Porter’s Diamond Model to identify and address the specific competitive and operational challenges encountered by these enterprises. Key findings include the necessity for enhanced financial literacy, simplified regulatory frameworks, and the integration of digital technologies to improve competitiveness. The proposed model focuses on strategic training, fostering innovation, and creating a more supportive financing environment. The implications of this study are profound, suggesting that policymakers and practitioners should streamline regulatory processes, enhance financial and technological support frameworks, and provide tailored training programs. These strategies are intended to bolster the sustainability and growth of MSMEs, contributing to broader economic development. This research contributes to the academic literature by providing empirical evidence on the challenges faced by MSMEs in developing economies and proposing a contextually adapted strategic model to mitigate these challenges, thereby enhancing their economic impact and sustainability.
The economy, unemployment, and job creation of South Africa heavily depend on the growth of the agricultural sector. With a growing population of 60 million, there are approximately 4 million small-scale farmers (SSF) number, and about 36,000 commercial farmers which serve South Africa. The agricultural sector in South Africa faces challenges such as climate change, lack of access to infrastructure and training, high labour costs, limited access to modern technology, and resource constraints. Precision agriculture (PA) using AI can address many of these issues for small-scale farmers by improving access to technology, reducing production costs, enhancing skills and training, improving data management, and providing better irrigation infrastructure and transport access. However, there is a dearth of research on the application of precision agriculture using artificial intelligence (AI) by small scale farmers (SSF) in South Africa and Africa at large. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Bibliometric analysis guidelines were used to investigate the adoption of precision agriculture and its socio-economic implications for small-scale farmers in South Africa or the systematic literature review (SLR) compared various challenges and the use of PA and AI for small-scale farmers. The incorporation of AI-driven PA offers a significant increase in productivity and efficiency. Through a detailed systematic review of existing literature from inception to date, this study examines 182 articles synthesized from two major databases (Scopus and Web of Science). The systematic review was conducted using the machine learning tool R Studio. The study analyzed the literature review articled identified, challenges, and potential societal impact of AI-driven precision agriculture.
While some conflict can serve as a more sophisticated stimulus to student achievement, significant or unresolved conflict can delay or even frustrate even the best-planned curriculum. The aim of our study is to get a clear picture of the conflicts with whom and to what extent the international students studying on our campuses have conflicts that affect their performance, and how they can manage them. In our study, based on a questionnaire survey (n = 480), we revealed that the international students at our university have the most conflicts with other foreign students, and the least with Hungarians, including their teachers. On the other hand, we found that according to the Thomas-Kilmann Conflict Instrument, they solve their problems by the Compromising and Accommodating style. The results obtained by detailed socio-demographic aspects show significant differences, mainly between gender, age, and country groups. Knowledge of the revealed facts and connections can offer conscious and careful solutions to understand and reduce tensions, and this can improve the understanding and management of conflict in the classroom, in collaborative projects, and even in non-teaching environments on campuses.
This study investigates the impact of artificial intelligence (AI) integration on preventing employee burnout through a human-centered, multimodal approach. Given the increasing prevalence of AI in workplace settings, this research seeks to understand how various dimensions of AI integration—such as the intensity of integration, employee training, personalization of AI tools, and the frequency of AI feedback—affect employee burnout. A quantitative approach was employed, involving a survey of 320 participants from high-stress sectors such as healthcare and IT. The findings reveal that the benefits of AI in reducing burnout are substantial yet highly dependent on the implementation strategy. Effective AI integration that includes comprehensive training, high personalization, and regular, constructive feedback correlates with lower levels of burnout. These results suggest that the mere introduction of AI technologies is insufficient for reducing burnout; instead, a holistic strategy that includes thorough employee training, tailored personalization, and continuous feedback is crucial for leveraging AI’s potential to alleviate workplace stress. This study provides valuable insights for organizational leaders and policymakers aiming to develop informed AI deployment strategies that prioritize employee well-being.
Copyright © by EnPress Publisher. All rights reserved.