An exhaustive analysis and evaluation of fertility indicators in a society including many ethnic groups might provide valuable insights into any discrepancies. This study aims to systematically analyse the fertility rates over specific periods and investigate the differences in levels and patterns between local and expatriate women in Saudi Arabia using the existing data. This analysis used data from credible sources published by the General Authority for Statistics in the Saudi census 2022. The calculation of period fertility indicators started with the most straightforward rates and advanced to more complex ones, followed by a comprehensive description of the advantages and disadvantages of each. The aim was to ascertain fluctuations in fertility rates and analyse temporal patterns. Multiple studies consistently show that the fertility rate among expats in Saudi Arabia is lower than that among Saudi native women. However, the reason for this discrepancy still needs to be discovered since the definitive effect of contraceptive techniques has yet to be confirmed. Moreover, the reproductive trends that have occurred since the early 1980s will persist, although with additional precautions in place.
This research analyses digital nomads’ relationship with tourism, their motivations for travelling and their expectations of the destinations they visit. In addition, it aims to understand the lifestyle of this public and their preference for sustainable destinations, as well as the implications for policies and the organisation of tourism infrastructure, in line with their specific needs. A questionnaire was administered to users of open-access social networks or members of online digital nomad communities (n = 34), between December 2022 and March 2023. Descriptive statistics, construct validations, reliability and internal consistency of the measures were carried out and Pearson’s linear correlation coefficient (r) was applied between items of the same scale and different scales. The results indicate that quality of life, life-work balance, living with other cultures, being in contact with nature, escaping from large urban centres, indulging in tourism all year round and travelling for long stays, are the main motivations of this public. The importance of quality Wi-Fi, flexible tourist services and support services is emphasised as the main attributes to be considered in tourist destinations.
This study highlights the importance of social capital within third sector organizations, as in other sectors of the economy, and confirms the influence of social capital on human capital. In this case, it contributes to the analysis of the structure and quality of relationships among members of a social organization, which enables motivation and commitment to collective action. Based on exploratory and confirmatory factor analysis, from a 45-item survey applied to 190 workers in social organizations; the constructs were reconfigured for the construction of the model of organizational social capital, was carried out using the structural equation methodology. It is argued that the cognitive and structural dimensions of social capital affect its relational dimension in terms of identification, trust and cooperation, which in turn influences worker motivation and other key aspects of human capital. The relational dimension, measured by workers’ identification, trust, and cooperation, has significant effects on their motivation and work engagement, which leads to important practical considerations for human resource policies in these organizations. The article contributes to the existing literature on human capital management by exploring the perception of workers in nonprofit organizations that are part of Ecuador’s third sector.
The freight transport chain brings together several types of players, particularly upstream and downstream players, where it is connected to both nodal and linear logistics infrastructures. The territorial anchoring of the latter depends on a good level of collaboration between the various players. In addition to the flow of goods from various localities in the area, the Autonomous Port of Lomé generates major flows to and through the port city of Lomé, which raises questions about the sustainability of these various flows, which share the road with passenger transport flows. The aim of this study is to analyse the challenges associated with the sustainability of goods flows. The methodology is based on direct observations of incoming and outgoing flows in the Greater Lomé Autonomous District (DAGL) and semi-directive interviews with the main players in urban transport and logistics. The results show that the three main challenges to the sustainability of goods transport are congestion (28%), road deterioration (22%) and lack of parking space (18%).
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
In the third national communication submitted by Ecuador, the total greenhouse gases (GHG) emission was calculated at 80,627 GgCO2-eq, considering the country’s commitment to the Framework on Climate Change. In 2018, Ecuador ratified its nationally determined contribution (NDC) to reduce its GHG emissions by 11.87% from the business-as-usual (BAU) scenario by 2025. The macroeconomic impacts of NDC implementation in the energy sector are discussed. A Computable Equilibrium Model applied to Ecuador (CGE_EC) is used by developing scenarios to analyze partial and entry implementation, as well as an alternative scenario. Shocks in exogenous variables are linked to NDC energy initiatives. So, the NDC’s feasibility depends on guaranteeing the consumption of hydropower supply, either through local exports or domestic demand. In the last case, the government’s Energy Efficiency Program (PEC) and electricity transport have important roles, but the high levels of investment required and poor social conditions would impair its implementation. NDC implementation implies a GDP increase and price index decrease due to electricity cost reductions in the productive sector. These conditions depend on demand-supply guarantees, and the opposite case entails negative impacts on the economy. The alternative scenario considers less dependence on the external market, achieving higher GDP, but with only partial fulfillment of the NDC goals.
Copyright © by EnPress Publisher. All rights reserved.