This paper provides a comprehensive review of equity trading simulators, focusing on their performance in assuring pre-trade compliance and portfolio investment management. A systematic search was conducted that covered the period of January 2000 to May 2023 and used keywords related to equity trade simulators, portfolio management, pre-trade compliance, online trading, and artificial intelligence. Studies demonstrating the use of simulators and online platforms specific to portfolio investment management, written in English, and matching the specified query were included. Abstracts, commentaries, editorials, and studies unrelated to finance and investments were excluded. The data extraction process included data related to challenges in modern portfolio trading, online stock trading strategies, the utilization of deep learning, the features of equity trade simulators, and examples of equity trade simulators. A total of 32 studies were included in the systematic review and were approved for qualitative analysis. The challenges identified for portfolio trading included the subjective nature of the inputs, variations in the return distributions, the complexity of blending different investments, considerations of liquidity, trading illiquid securities, optimal portfolio execution, clustering and classification, the handling of special trading days, the real-time pricing of derivatives, and transaction cost models (TCMs). Portfolio optimization techniques have evolved to maximize portfolio returns and minimize risk through optimal asset allocation. Equity trade simulators have become vital tools for portfolio managers, enabling them to assess investment strategies, ensure pre-trade compliance, and mitigate risks. Through simulations, portfolio managers can test investment scenarios, identify potential hazards, and improve their decision-making process.
In the era of rapid information technology development, artificial intelligence (AI) and virtual reality (VR) technologies have gradually infiltrated the field of university English teaching, brought significant applications and impacted to English language learning in listening, speaking, writing, translation, and personalized learning. AI plays a vital role as an auxiliary teaching method in university English instruction, and the integration of VR technology further enhances teaching efficiency. This research will propose relevant recommendations to provide theoretical references for university English education in the age of AI, while also offering insights and guidance to educators in the education industry during the informatization reform of education.
During the early spring in the woodlands of eastern North America, Phlox drummondii emerges as a perennial plant adorned with a profusion of blooms in shades of blue, purple, pink, or white. Its evergreen nature adds to its charm. To manage the growth of plants or specific plant parts, plant growth regulators (PGRs) are synthesized and employed, serving as valuable tools for controlling and directing the development of various plant species. A diverse range of ornamental plants, such as Phlox drummondii, have been documented to receive exogenous applications of plant growth regulators (PGRs). Among these regulators, gibberellins (GA) play a vital role by delaying senescence in flowers and promoting the breaking of dormancy in seeds, bulbs, and corms of ornamental plants. The experiment aimed to assess the performance and determine the optimal growth medium for Phlox. Five distinct growth media were employed as treatments during the study, which took place in the Horticulture Department of Gomal University. Collected data underwent analysis through ANOVA and Tuckey HSD tests. The study’s findings revealed that the highest plant height (16 cm) was observed in the control treatment with PGR 1, closely followed by PGR 2 (11.5 cm). The treatment labeled as T5, composed of a mixture of 1/3 sand, 1/3 poultry manure, and 1/3 soil, demonstrated the most favorable results across multiple parameters such as bud initiation (BI), first flower emergence (FFE), flowers per plant (FPP), branches per plant (BPP), leaves per plant (LPP), number of roots (NR), field life of flowers (FLF), and flower diameter (FD). T4, T3, T2, and T1 treatments also exhibited similar positive outcomes, aligning with the promising performance of T5.
Google Earth images in the Marche Region of Central Italy revealed a circular structure consisting of a ring system made up of concentric hills and valleys. Cartography, DEM, geological, and available geophysical data were used to constrain the possible origin of the structure. Located in the Messinian foredeep deposits of the Central Apennines, it has a rim diameter of 3.75 km and a central uplift connected to its southernmost part. As it was formed in the clays of the Lower Pliocene, and clays are believed to have emerged definitively after the Upper Pliocene, its age might be constrained to the Lower Pleistocene. Similar concentric structures are usually found in impact craters, sedimentary domes, and volcanic landforms. As salt domes and magmatic activity are not found in this region, this study seeks to validate the results of previous work that it was the result of an ancient impact crater of hydrological, brachyanticline, or clayey diapiric origins. Specifically, an observed second ring portion with a curvature radius about double the first in size will be investigated in this work. This second ring portion appears to be concentric to the first one and is visible along its northern and western parts. Although double concentric rings are usually due to impact craters, the absence of the ring portion in the other two directions and the probable deviation of a river, deduced by studying hydrography, support the hypothesis that it might be of clay diapir origin.
In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
This research study explores the addition of chromium (Cr6+) ions as a nucleating agent in the alumino-silicate-glass (ASG) system (i.e., Al2O3-SiO2-MgO-B2O3-K2O-F). The important feature of this study is the induction of nucleation/crystallization in the base glass matrix on addition of Cr6+ content under annealing heat treatment (600 ± 10 °C) only. The melt-quenched glass is found to be amorphous, which in the presence of Cr6+ ions became crystalline with a predominant crystalline phase, Spinel (MgCr2O4). Microstructural experiment revealed the development of 200–500 nm crystallite particles in Cr6+-doped glass-ceramic matrix, and such type microstructure governed the mechanical properties. The machinability of the Cr-doped glass-ceramic was thereby higher compared to base alumino-silicate glass (ASG). From the nano-indentation experiment, the Young’s modulus was estimated 25(±10) GPa for base glass and increased to 894(±21) GPa for Cr-doped glass ceramics. Similarly, the microhardness for the base glass was 0.6(±0.5) GPa (nano-indentation measurements) and 3.63(±0.18) GPa (micro-indentation measurements). And that found increased to 8.4(±2.3) (nano-indentation measurements) and 3.94(±0.20) GPa (micro-indentation measurements) for Cr-containing glass ceramic.
Copyright © by EnPress Publisher. All rights reserved.