Indonesia, an emerging archipelagic nation, possesses abundant natural resources spanning marine, land (including forests and water sources), and diverse biological riches. The agricultural sector emerges as a pivotal driver of growth across the country, exhibiting extensive distribution. Consequently, there is an urgent imperative for comprehensive research to bolster and optimize the performance of this sector. This study aims to meticulously analyze and scrutinize macroeconomic variables aimed at enhancing Indonesia’s agricultural sector. Through the utilization of a dynamic panel model, the study zeroes in on crucial variables: economic growth in the agricultural sector, farmer terms of exchange, human development index, population density, inflation, average daily wages, and lagged economic growth data from each province in Indonesia. The best model for dynamic panel testing, employing both First Difference Generalized Method of Moments (FD-GMM) and Generalized Method of Moments System (SYS-GMM) approaches, is identified as the SYS-GMM model. This model exhibits unbiased and consistent estimation, as evidenced by the Arellano-Bond (AB) test and Sargan test results. The analysis conducted using this selected model reveals notable findings. Lagging agricultural sector performance, human capital measured by the Human Development Index (HDI), and farmers’ exchange rates are found to significantly and positively influence the economic growth of the agricultural sector. Conversely, inflation exerts a significant and negative impact on sectoral growth. However, wage levels and population density do not demonstrate a significant partial effect on the economic growth of the agricultural sector.
The coronavirus pandemic has reinforced the need for sustainable, smart tourism and local travel, with rural destinations gaining in their popularity and leading to increased potential of smart rural tourism. However, these processes need adjustments to the current trends, incorporating new transformative business concepts and marketing approaches. In this paper we provide real life examples of new marketing approaches, together with new business models within the context of the use of new digital technologies. Via hermeneutic research approach, consisting of the secondary analysis of the addressed subject of smart rural tourism in adversity of the COVID-19 and 6 semi-structured interviews, the importance of technology is underscored in transforming rural tourism to smart rural tourist destinations. The respondents in the interview section were chosen based on their direct involvement in the presented examples and geographical location, i.e. France, Slovenia and Spain, where presented research examples were developed, concretely within European programmes, i.e. Interreg, Horizon and Rural Development Programme (RDP). Interviews were taking place between 2022 and 2023 in person, email or via Zoom. This two-phased study demonstrates that technology is important in transforming rural tourism to smart tourist destinations and that it ushers new approaches that seem particularly useful in applying to rural areas, creating a rural digital innovation ecosystem, which acts as s heuristic rural tourist model that fosters new types of tourism, i.e. smart rural tourism.
Amidst China’s burgeoning population and rapid technological strides, this study explores how elderly citizens navigate and embrace electronic governance (e-governance) platforms. Addressing a crucial gap in knowledge, we delve into their limited digital fluency and its impact on e-governance adoption. Our meticulously crafted online survey, distributed via WeChat across significant cities (Beijing, Shanghai, Tianjin, Changsha), yielded 396 responses (384 analyzable). Utilizing Structural Equation Modeling (SEM), we unearthed key influencers of subjective norms, including perceived ease and usefulness, trust, supportive conditions, and past tech exposure. These norms, in turn, positively shape attitudes. Crucially, educational background emerges as a moderator, amplifying the positive link between attitudes and e-governance engagement intent. This underscores the necessity of an inclusive, customized e-governance approach, offering valuable policy insights and advocating for holistic solutions for older adults. Our research yields empirical and theoretical contributions, paving the way for actionable Social Sustainability Marketing Technologies in China, particularly championing digital inclusivity for seniors.
This study aims to structure guidelines for an intervention model from the perspective of Integral Project Management to improve the competitiveness level of cacao associations in south region of Colombia. The research followed a mixed-method approach with a non-experimental cross-sectional design and a descriptive scope. The study employed a stage-based analytical framework which included: identifying the factors influencing the competitiveness of the cacao sector; grouping these factors under the six primary determinants of competitiveness with reference to Porter’s Diamond Model; and proposing guidelines for an intervention model to enhance the competitiveness of the studied associations through project management. The first stage was conducted via literature review. The second stage involved primary data collected through surveys and interviews with the associations, members, and cacao sector experts in Huila. The third stage entailed grouping the factors within the main determinants that promote and limit the competitiveness of the cacao sector in the context of Porter’s Diamond Model. Based on the analysis of the corresponding restrictive and promoting factors, strategic recommendations were formulated for the various sector stakeholders on the measures that can be adopted to address restrictive factors and maintain promoting factors to enhance and sustain the sector's competitiveness.
This paper investigates the factors influencing credit growth in Kosovo, focusing on the relationship between credit activity and key economic variables, including GDP, FDI, CPI, and interest rates. Its analysis targets loans issued to businesses and households in Kosovo, employing a VAR model integrated into a VEC model to investigate the determinants of credit growth. The findings were validated using OLS regression. Additionally, the study includes a normality test, a model stability test (Inverse Roots AR Characteristic Polynomial), a Granger causality test for short-term relationships, and variance decomposition to analyze variable shocks over time. This research demonstrates that loan growth is primarily driven by its historical values. The VEC model shows that, in the long run, economic growth in Kosovo leads to less credit growth, showing a negative link between it and GDP. Higher interest rates also reduce credit growth, showing another negative link. On the other hand, more foreign direct investment (FDI) increases credit demand, showing a positive link between credit growth and FDI. The results show that loans and inflation (CPI) are positively linked, meaning higher inflation leads to more credit growth. Similarly, more foreign direct investment (FDI) increases credit demand, showing a positive link between FDI and credit growth. In the long term, higher inflation is connected to greater credit growth. In the short term, the VAR model suggests that GDP has a small to moderate effect on loans, while FDI has a slightly negative effect. In the VAR model, interest rates have a mixed effect: one coefficient is positive and the other negative, showing a delayed negative impact on loan growth. CPI has a small and negative effect, indicating little short-term influence on credit growth. The OLS regression supports the VAR results, finding no effect of GDP on loans, a small negative effect from FDI, a strong negative effect from interest rates, and no effect from CPI. This study provides a detailed analysis and adds to the research by showing how macroeconomic factors affect credit growth in Kosovo. The findings offer useful insights for policymakers and researchers about the relationship between these factors and credit activity.
Copyright © by EnPress Publisher. All rights reserved.