This paper discusses the construction strategy of innovation and entrepreneurship education path for college students under the background of digital economy. Firstly, this paper analyzes the characteristics of digital economy and its influence on higher education, and then puts forward four core construction paths for college students' innovation and entrepreneurship education: integrating digital skills and knowledge, promoting practice and innovative thinking, interdisciplinary integration and collaborative learning, and linking industry and academia. Each path discusses the specific implementation and expected effect in detail. The purpose of this study is to provide higher education institutions with effective methods and strategies to cultivate students with innovative spirit and entrepreneurial ability in the era of digital economy.
In the process of English learning, primary school English is an important period of enlightenment. However, teachers’ old-fashioned teaching methods and obscure teaching contents make primary school students less interested in learning English, which will affect students’ entire English learning career. Under this educational background, the education department should analyze the existing problems in English teaching methods, teaching contents and teaching concepts based on the current situation of English teaching in primary schools, aiming to improve the interest of English teaching in primary schools through effective strategies.
In this Data science research on Education, it analyses the alcohol consumption, parent’s education, study time and other factors may influence on student performance.
Adult obesity is a significant health problem, with nearly a quarter of Hungarian citizens aged 15 years and older being obese in 2019 (KSH, 2019a). The use of mobile devices for health purposes is increasing, and many m-health apps target weight-related behaviours. This study uniquely examines the effectiveness and user satisfaction of health-oriented apps among Hungarian adults, with a focus on health improvement. Using a mixed-methods approach, the study identifies six key determinants of health improvement and refines measurement tools by modifying existing parameters and introducing new constructs. The principal objective was to develop a measurement instrument for the usability of nutrition, relaxation and health promotion applications. The research comprised three phases: (1) qualitative content analysis of 13 app reviews conducted in June 2022; (2) focus group interviews involving 32 students from the fields of business, economics and health management; and (3) an online survey (n = 348 users) conducted in December 2023 that included Strava (105 users), Yazio (109 users) and Calm (134 users). Six factors were identified as determinants of health improvement: physical activity, diet, weight loss, general well-being, progress, and body knowledge. The LAUQ (Lifestyle Application Usability Questionnaire) scale was validated, including ‘ease of use’ (5 items), ‘interface and satisfaction’ (7 items) and ‘modified usefulness and effectiveness’ (9 items), with modifications based on qualitative findings. This research offers valuable insights into the factors influencing health improvement and user satisfaction with healthy lifestyle-oriented applications. It also contributes to the refinement of measurement tools such as the LAUQ, which will inform future studies in health psychology, digital health, and behavioural economics.
The construction of researcher profiles is crucial for modern research management and talent assessment. Given the decentralized nature of researcher information and evaluation challenges, we propose a profile system for Chinese researchers based on unsupervised machine learning and algorithms. This system builds comprehensive profiles based on researchers’ basic and behavior information dimensions. It employs Selenium and Web Crawler for real-time data retrieval from academic platforms, utilizes TF-IDF and BERT for expertise recognition, DTM for academic dynamics, and K-means clustering for profiling. The experimental results demonstrate that these methods are capable of more accurately mining the academic expertise of researchers and performing domain clustering scoring, thereby providing a scientific basis for the selection and academic evaluation of research talents. This interactive analysis system aims to provide an intuitive platform for profile construction and analysis.
This paper models 54,559 Chinese news items about education industry and scientific industry by machine learning during the COVID-19 epidemic to build China’s increased scientific research policy (ISRP) index. The result of interrupted time series analysis indicates that, the ISRP has an emphatic positive causality on the education industry advancement and promotes the development of the education industry. The ISRP also has a remarkable positive causality on the development of the scientific industry. Moreover, the result of causal network indicates that, a virtuous circle within the ISRP, the education industry and the scientific industry has been formed, which has promoted the sustainable development of the education chain.
Copyright © by EnPress Publisher. All rights reserved.