This study investigates the willingness of Indonesian consumers, particularly in West Java, to pay for green products by applying and expanding the Theory of Planned Behavior (TPB). It examines how perceived green product value and willingness to pay premiums influence consumer intentions and behavior toward green purchases. The research highlights the gap between consumers’ willingness to pay for environmentally friendly products and the actual sales of such products. By incorporating perceived value and willingness to pay into the TPB framework, the study aims to find what factors that can address the gap particularly in a developing country context to contribute to shaping a pro-environmental socio-cultural community in Indonesia and mitigates country’s significant environmental challenges. In the context of 251 young consumers in Indonesia, this study finds that subjective norms do not significantly influence purchase intentions. However, attitudes and behavioral controls do effectively encourage green behavior, suggesting that societal norms for green behavior may not be fully established. In addition, while willingness to pay a premium and perceived value of green purchases can influence green behavior, consumers are generally reluctant to pay higher prices for environmentally friendly products.
This study explores the impact of online assessments on students’ academic performance and learning outcomes at the University of Technology in South Africa. The research problem addresses the effectiveness and challenges of digital assessment platforms in higher education (HE), particularly their influence on student engagement, feedback quality, and academic integrity. A qualitative case study approach was employed, involving semi-structured interviews with ten undergraduate and postgraduate students from diverse academic backgrounds. The findings reveal that while online assessments provide flexibility and immediate feedback, they also pose challenges related to technical issues, feedback delays, and concerns about long-term knowledge retention. The study highlights the necessity of aligning assessment strategies with constructivist learning principles to enhance critical thinking and student-centered learning. Implications for theory include strengthening the application of constructivist learning in digital environments, while practical recommendations focus on improving assessment design, institutional support, and feedback mechanisms. Policy adjustments should consider inclusive and equitable access to online assessments. Future research should further investigate the long-term impact of digital assessments on professional readiness. This study contributes to ongoing discussions on online education by offering a nuanced understanding of digital assessment challenges and opportunities in higher education.
The purpose of this research is to estimate the differences in sales levels between businesses owned by individuals who self-identify as Indigenous (IE) and those who do not (NIE), as well as between males (ME) and females (WE), and how this intersection may affect their sales levels. To accomplish this, an Analysis of Variance (ANOVA) is used to compare the means between the groups analyzed, and Tukey’s Honestly Significant Differences (HSD) is used to determine the magnitude and direction of these differences. The results of the study show that indigenous-owned businesses have sales that are 26% lower than the general average, while women-owned businesses have sales that are 70.6% lower in the same comparison. In addition, businesses run by indigenous women have sales that are 93.5% lower on average. These findings suggest that the challenges faced by entrepreneurs reflect the structural inequalities observed in other areas of society and highlight the need for public and private policies focused on reducing these gaps.
Creating a crop type map is a dominant yet complicated model to produce. This study aims to determine the best model to identify the wheat crop in the Haridwar district, Uttarakhand, India, by presenting a novel approach using machine learning techniques for time series data derived from the Sentinel-2 satellite spanned from mid-November to April. The proposed methodology combines the Normalized Difference Vegetation Index (NDVI), satellite bands like red, green, blue, and NIR, feature extraction, and classification algorithms to capture crop growth's temporal dynamics effectively. Three models, Random Forest, Convolutional Neural Networks, and Support Vector Machine, were compared to obtain the start of season (SOS). It is validated and evaluated using the performance metrics. Further, Random Forest stood out as the best model statistically and spatially for phenology parameter extraction with the least RMSE value at 19 days. CNN and Random Forest models were used to classify wheat crops by combining SOS, blue, green, red, NIR bands, and NDVI. Random Forest produces a more accurate wheat map with an accuracy of 69% and 0.5 MeanIoU. It was observed that CNN is not able to distinguish between wheat and other crops. The result revealed that incorporating the Sentinel-2 satellite data bearing a high spatial and temporal resolution with supervised machine-learning models and crop phenology metrics can empower the crop type classification process.
The use of geotechnologies combined with remote sensing has become increasingly essential and important for efficiently and economically understanding land use and land cover in specific regions. The objective of this study was to observe changes in agricultural activities, particularly agriculture/livestock farming, in the North Forest Zone of Pernambuco (Mata Norte), a political-administrative region where sugarcane cultivation has historically been the backbone of the local economy. The region’s sugarcane biomass also contributes to land use and land cover observations through remote sensing techniques applied to digital satellite images, such as those from Landsat-8, which was used in this study. This study was conducted through digital image processing, allowing the calculation of the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Leaf Area Index (LAI) to assess vegetation cover dynamics. The results revealed that sugarcane cultivation is the predominant agricultural and vegetation activity in Mata Norte. Livestock farming areas experienced a significant reduction over the observed decade, which, in turn, led to an increase in agricultural and forested areas. The most dynamic spatiotemporal behavior was observed in the expansion and reduction of livestock areas, a more significant change compared to sugarcane areas. Therefore, land use and land cover in this region are more closely tied to sugarcane cultivation than any other agricultural activity.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
Copyright © by EnPress Publisher. All rights reserved.