Humic substances are used in agriculture as promoters of plant growth, especially of the root system. The objective of the work was to evaluate the effect of the application of different doses of fulvic acid on the growth and productivity of American lettuce, Raider Plus cultivar. The experimental design used was entirely randomized, with five treatments of fulvic acid 0, 1, 2, 4, 8 mL·L-1 and four repetitions, applied at the time of transplanting. Two experiments were conducted simultaneously: one in the greenhouse, where fresh and dry mass of the aboveground and root parts, length and volume of the roots were evaluated; and the other in the field, where, at the end of the cycle, fresh and dry mass of the aboveground parts, number of leaves, stem length and average head circumference were evaluated. The application of different doses of fulvic acid promoted the growth of lettuce plants, especially the root system. The emission of roots, with predominance, of those of smaller diameter, was found in the higher concentrations of fulvic acid. The number of leaves and the average circumference of the head expressed responses in the concentrations of fulvic acid.
In this paper, an improved mathematical model for flashover behavior of polluted insulators is proposed based on experimental tests. In order to determine the flashover model of polluted insulators, the relationship between conductivity and salinity of solution pollution layer of the insulator is measured. Then, the leakage of current amplitude of four common insulators versus axial, thermal conductivity and arc constants temperature was determined. The experimental tests show that top leakage distance (TLd) to bottom leakage distance (BLd) ratio of insulators has a significant effect on critical voltage and current. Therefore, critical voltage and current were modeled by TLd to BLd ratio Index (M). Also, salinity of solution pollution layer of the insulators has been applied to this model by resistance pollution parameter. On the other hand, arc constants of each insulator in new model have been identified based on experimental results. Finally, a mathematical model is intended for critical voltage against salinity of solution pollution layer of different insulators. This model depends on insulator profile. There is a good agreement between the experimental tests of pollution insulators obtained in the laboratory and values calculated from the mathematical models developed in the present study.
Afforestation is a main tool for preventing desertification and soil erosion in arid and semiarid regions of Iran. Large-scale afforestation, however, has poorly understood consequences for the future ecosystems in the term of ecosystems protection. The objective of the present study is to identify changes in soil properties following different intervals of planting of Ailanthus altissima (tree of heaven) in semiarid afforestation of Iran (Chitgar Forest Park, Tehran). For this purpose, sand, silt and clay ratios, bulk density, soil moisture, pH, electrical conductivity, phosphorus, potassium, magnesium, calcium, sodium, total soil N, and total carbon was measured. Our study highlighted the potential of the invasive trees by A. altissima, to alter soil properties along chronosequence. Almost all soil quality attributes showed a declining trend with stand age. A continuous decline in soil quality indicated that the present land management may not be sustainable. Therefore, an improved management practice is imperative to sustain soil quality and maintain long-term productivity of plantation forests. Thinning activity will be required to reduce the number of trees competing for the same nutrients especially in a older stand to protect forest soils.
Helical deep hole drilling is a process frequently used in industrial applications to produce bores with a large length to diameter ratio. For better cooling and lubrication, the deep drilling oil is fed directly into the bore hole via two internal cooling channels. Due to the inaccessibility of the cutting area, experimental investigations that provide information on the actual machining and cooling behavior are difficult to carry out. In this paper, the distribution of the deep drilling oil is investigated both experimentally and simulatively and the results are evaluated. For the Computational Fluid Dynamics (CFD) simulation, two different turbulence models, i.e. the RANS k-ω-SST and hybrid SAS-SST model, are used and compared. Thereby, the actual used deep drilling oil is modelled instead of using fluid dynamic parameters of water, as is often the case. With the hybrid SAS-SST model, the flow could be analyzed much better than with the RANS k-ω-SST model and thus the processes that take place during helical deep drilling could be simulated with realistic details. Both the experimental and the simulative results show that the deep drilling oil movement is almost exclusively generated by the tool rotation. At the tool’s cutting edges and in the flute, the flow velocity drops to zero for the most part, so that no efficient cooling and lubrication could take place there. In addition, cavitation bubbles form and implode, concluding in the assumption that the process heat is not adequately dissipated and the removal of chips is adversely affected, which in turn can affect the service life of the tool and the bore quality. The carried out investigations show that the application of CFD simulation is an important research instrument in machining technology and that there is still great potential in the area of tool and process optimization.
Entomopathogens are microorganisms that pathogenic to insect pest. Several species of naturally occurring viz; fungi, bacteria, viruses and nematodes, infect a variety of insect pests and play an important role in agricultural crops controlling insect pest management. This kind of biopesticide has many advantages and alternative to chemical insecticides, highly specific, safe, and environmentally sustainable. Pest problems are an almost inevitable part of agriculture. They occur largely because agricultural systems are simplified and modifications of natural ecosystems. Viruses, bacteria are host specific and fungi generally have broader host range and can infect both underground and aboveground pests, soil-dwelling nature nematodes are more suitable for managing soil pests. Growing crops in monoculture provides concentrated food resource that allows pest populations to achieve higher densities in natural environments. Some of the most important problems occur when pests develop resistance to chemical pesticides. These cause highly significant damage to crops, there are also threats from emerging new strains of pests. Crops cultivation can make the physico-chemical environment more favourable for pest activity. Agricultural pests are reducing the yield and quality of produce by feeding on crops, transmitting diseases. Agricultural production significantly loss crop yields, suggest that improvements in pest management are significant forward for improving yields. Crop growers are under immense pressure to reduce the use of chemical pesticides without sacrificing yields, but at the same time manage of pests is becoming difficult due to pesticide resistance and the decreasing availability of products. Alternative methods are needed urgently. These need to be used as part of Integrated Pest Management safety and environmental impact.
Eucalyptus is an important source of cellulose and a widely cultivated plant. Biotechnology tools can save time spent in breeding and transcriptomic approaches generate a gene profile that allows the identification of candidates involved in processes of interest. RNA-seq is a commonly used technology for transcript analysis and it provides an overview of regulatory pathways. Here, we selected two contrasting Eucalyptus species for cold acclimatization and focused in responsive genes under cold condition aiming woody properties – lignin and cellulose. The number of differentially expressed genes identified in stem sections were 3.300 in Eucalyptus globulus and 1370 in Eucalyptus urograndis. We listed genes with expression higher than 10 times including NAC, MYB and DUF family members. The GO analysis indicates increased oxidative process for E. urograndis. This data can provide information for more detailed analyses for breeding, especially in perennial plants.
Copyright © by EnPress Publisher. All rights reserved.