Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China’s A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
A Detailed geophysical investigation was conducted on Knossos territory of Crete Island. Main scope was the detection of underground archaeological settlements. Geophysical prospecting applied by an experienced geophysical team. According to area dimensions in relation to geological and structural conditions, the team designed specific geophysical techniques, by adopted non-catastrophic methods. Three different types of geophysical techniques performed gradually. Geophysical investigation consisted of the application of geoelectric mapping and geomagnetic prospecting. Electric mapping focusses on recording soil resistance distribution. Geomagnetic survey was performed by using two different types of magnetometers. Firstly, recorded distribution of geomagnetic intensity and secondly alteration of vertical gradient. Measured stations laid along the south-north axis with intervals equal to one meter. Both magnetometers were adjusted on a quiet magnetic station. Values were stored in files readable by geophysical interpretation software in XYZ format. Oasis Montaj was adopted for interpretation of measured physical properties distribution. Interpretation results were illustrated as color scale maps. Further processing applied on magnetic measurements. Results are confirmed by overlaying results from three different techniques. Geoelectric mapping contributed to detection of a few archaeological targets. Most of them were recorded by geomagnetic technique. Total intensity aimed to report the existence of magnetized bodies. Vertical gradient detected subsurface targets with clearly geometrical characteristics.
The research aims to map environmental protection strategies and the related control tools and to identify the links among companies with the largest number of employees and sites in Hungary. The research questions were answered using a questionnaire survey method. The authors used cluster analysis to classify the 205 company strategies into the identified strategy clusters: Leaders, Awakeners, and Laggards. Then, the examined 21 environmental management control tools in the sample were divided into four groups: strategic, administrative, methodological and economic. Economic and strategic methods were the most common in the sample. The authors used cross-tabulation analysis to examine whether there is a statistically proven relationship between belonging to environmental strategy clusters and specific control tools. The analysis showed significant but weak to moderate relationships. According to Cramer’s V and the contingency coefficient, the closest relationship between the tested environmental management control tools and membership in environmental strategy clusters is shown by evaluating investments, assessing the economic viability of environmental strategies, and running an environmental training program for employees. In case of the robust lambda indicator, a significant relationship was found by examining the economics of environmental strategies and identifying environmental success factors and eco-balances. It can be concluded that the companies under examination follow a set of environmental goals, which they have incorporated into their strategic objectives. They use the available environmental management control toolbox to develop their strategies and to monitor their implementation to varying degrees.
Oil spills (OS) in waters can have major consequences for the ecosystem and adjacent natural resources. Therefore, recognizing the OS spread pattern is crucial for supporting decision-making in disaster management. On 31 March 2018, an OS occurred in Balikpapan Bay, Indonesia, due to a ship’s anchor rupturing a seafloor crude oil petroleum pipe. The purpose of this study is to investigate the propagation of crude OS using coupled three-dimensional (3D) model from DHI MIKE software and remote sensing data from Sentinel-1 SAR (Synthetic Aperture Radar). MIKE3 FM predicts and simulates the 3D sea circulation, while MIKE OS models the path of oil’s fate concentration. The OS model could identify the temporal and spatial distribution of OS concentration in subsurface layers. To validate the model, in situ observations were made of oil stranded on the shore. On 1 April 2018, at 21:50 UTC, Sentinel-1 SAR detected an OS on the sea surface covering 203.40 km2. The OS model measures 137.52 km2. Both methods resulted in a synergistic OS exposure of 314.23 km2. Wind dominantly influenced the OS propagation on the sea surface, as detected by the SAR image, while tidal currents primarily affected the oil movement within the subsurface simulated by the OS model. Thus, the two approaches underscored the importance of synergizing the DHI MIKE model with remote sensing data to comprehensively understand OS distribution in semi-enclosed waters like Balikpapan Bay detected by SAR.
The reduction of biodiversity and the decline in wildlife populations are urgent environmental issues with devasting consequences for ecosystems and human health. As a result, the protection of wildlife and biodiversity has emerged as one of humanity’s greatest goals, not only for protecting and maintaining human health but also for environmental, economic, and social well-being. In recent years, people have become increasingly aware of the importance and effectiveness of wildlife conservation efforts alongside environmental protection measures, sustainable agricultural practices and non-harmful production procedures and services. This study describes the development and implementation of a labeling scheme for wildlife and biodiversity protection for products or services. The label is designed to encourage the adoption of sustainable and environmentally friendly production methods and services that will contribute to biodiversity conservation and the harmonic coexistence of human-wildlife. Moreover, using a case study approach, the research presents an innovative information system designed to streamline the label-awarding process, ensuring transparency and efficiency. The established system evaluates the sustainability practices and measures implemented by businesses, with a focus on honey production in this case. Additionally, the study explores the broader social implications of the label, particularly its potential to engage consumers and promote awareness of biodiversity conservation.
Copyright © by EnPress Publisher. All rights reserved.