The aim of this study is to determine how bank diversification affects bank stability. To this end, it examines data of 136 commercial banks operating in 14 MENA (Middle East and North Africa) countries observed from 2005 to 2021, using the System Generalized Method of Moments (GMM) panel data regression analysis. The selected countries are Bahrain, Egypt, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Morocco, Lebanon, Algeria, Tunisia, Iran, Iraq, and the United Arab Emirates. The main results point to the enhancing effect of income diversification on bank stability. Our results underline the “Bright Side” of banking income diversification in the MENA region. However, this stabilizing income diversification effect is not always maintainable. The results also point to a non-linear relationship between interest/non-interest income and financial stability, suggesting that higher diversification reduces risk. We use a dynamic panel threshold model to determine income diversification thresholds that stabilize banks in the MENA region.
This study investigates the evolution of monetary policy in Ghana and explores the potential of Central Bank Digital Currencies (CBDCs), specifically the e-Cedi, as a tool to enhance financial inclusion and modernize the country’s financial system. Ghana’s monetary policy framework has undergone significant transformations since the establishment of the Bank of Ghana in 1957, with notable achievements in stabilizing the economy and managing inflation. However, large segments of the population, particularly in rural areas, remain unbanked or underbanked, highlighting the limitations of traditional monetary tools. The introduction of the e-Cedi presents an opportunity to bridge these gaps by providing secure, efficient, and accessible financial services to underserved communities. The study employs a qualitative research design, integrating historical analysis, case studies, and thematic analysis to assess the potential benefits and challenges of CBDCs in Ghana. Key findings indicate that while the e-Cedi could significantly enhance financial inclusion, challenges related to technological infrastructure, cybersecurity, and public trust must be addressed. The study concludes that a balanced approach, which prioritizes digital infrastructure development, strong cybersecurity measures, and collaboration with financial institutions, is essential for maximizing the potential of CBDCs in Ghana. Recommendations for future research include a deeper exploration of the impact of CBDCs on financial stability and further analysis of rural adoption barriers.
To fight inflation, European Central Bank (ECB) announced 10 successive interest rate hikes, starting on 27 July 2022, igniting an unprecedented widening of interest rate spreads in the euro area (ΕΑ). Greek banks, however, recorded among the highest interest rate spreads, far exceeding ΕΑ median and weighted average. Indeed, we document a strong asymmetric response of Greek banks to ECB interest rate hikes, with loan interest rates rising immediately, whilst deposit interest rates remained initially unchanged and then rose sluggishly. As a result, the interest rate spread hit one historical record after another. Greek systemic banks, probably taking advantage of the high concentration and low competition in the domestic sector benefited from key ECB interest rate hikes, recording gigantic increases in net interest income (NII), and consequently, substantial profits (almost €7.4 billion in the 2022–2023 biennium). Such excessive accumulation of profits (that deteriorates the living conditions of consumers) by the banking system could be called the inflation of “banking greed”, or bankflation. This new source of inflation created by the oligopolistic structure of the Greek banking sector counterworks the very reason for ECB interest rate increases and requires certain policy analysis recommendations in coping with it.
This article aims to measure and identify the factors influencing the decision to use Chatbot in e-banking services for GenZ customers in Vietnam through 292 customers. Testing methods: Cronbach’s Alpha trust factor, EFA discovery factor analysis, and regression analysis have shown that 07 factors directly affect GenZ’s decision to use Chatbot. Those factors include (1) Customer attitude; (2) Useful perception; (3) Perception of ease of use; (4) Behavioral control perception; (5) Risk perception; (6) Subjective norms and (7) Trust. On that basis, the article has set out management implications for Vietnamese commercial banks to approach and increase the decision of customers aged 18–24 years in Vietnam.
This study examines the influence of organizational learning and boundary spanner agility in the bank agent business of Indonesia’s financial inclusion. This study is based on quantitative studies of 325 bank agents in Indonesia. The results of this research strongly show that organizational learning has a significant impact on boundary spanners’ agility to achieve both financial and non-financial performance. This study presents a novel finding that organization learning with a commitment to apply and encourage learning activities and agility with improved responsiveness and resilience boundary spanners can achieve bank agent performance. Organizational learning of bank agents needs to improve commitment to apply and encourage learning activities, always be open to new ideas, and create shared vision and knowledge transfer mechanisms. Organizational agility in bank agents need also to improve the capability to be more responsive and adaptable to culture changes in a volatile environment. This research provides valuable insights to policymakers, banking supervisors, bank top management teams, and researchers on the factors that may improve the effectiveness of the agency banking business to promote financial inclusion. Participating banks in the agent banking business need to set a clear vision, scope, and priority of strategy to encourage organizational learning and agility.
Credit policies for clean and renewable energy businesses play a crucial role in supporting carbon neutrality efforts to combat climate change. Clustering the credit capacity of these companies to prioritize lending is essential given the limited capital available. Support Vector Machine (SVM) and Artificial Neural Network (ANN) are two robust machine learning algorithms for addressing complex clustering problems. Additionally, hyperparameter selection within these models is effectively enhanced through the support of a robust heuristic optimization algorithm, Particle Swarm Optimization (PSO). To leverage the strength of these advanced machine learning techniques, this paper aims to develop SVM and ANN models, optimized with the PSO, for the clustering problem of green credit capacity in the renewable energy industry. The results show low Mean Square Error (MSE) values for both models, indicating high clustering accuracy. The credit capabilities of wind energy, clean fuel, and biomass pellet companies are illustrated in quadrant charts, providing stakeholders with a clear view to adjust their credit strategies. This helps ensure the efficient operation of banking green credit policies.
Copyright © by EnPress Publisher. All rights reserved.