Climate change has affected the coasts of the world due to numerous factors, including the change in the intensity and frequencies of the storms and the increase in the mean sea level, among others. Argentina has extensive coastal areas, and research and monitoring tasks are expensive and require a significant number of personnel to cover large geographical areas. Given this, citizen science has become a tool to increase scientific research's spatial and temporal extension. Therefore, the paper aims to analyze the methodology and development of the citizen science project in Villa Gesell and its lessons for applying them in future coastal environmental monitoring projects. The methodology was based on an experience of the project co-created between activists and researchers. This project included four phases for social and physical aspects: training for the citizens, theoretic and practical aspects of coastal dynamics, and how to measure its geomorphological and oceanographic variations; data collection: the activists who received the training performed the measurements to monitor the beach; data analysis by scientists; and dissemination of results; the report data were disseminated by citizens in their community. The analysis of case studies in citizen science projects generates a fundamental learning arena to apply in future projects. Among the positive aspects were the phases established for their development and the methodology used to collect beach monitoring data.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
The sea level rise under global climate change and coastal floods caused by extreme sea levels due to the high tide levels and storm surges have huge impacts on coastal society, economy, and natural environment. It has drawn great attention from global scientific researchers. This study examines the definitions and elements of coastal flooding in the general and narrow senses, and mainly focuses on the components of coastal flooding in the narrow sense. Based on the natural disaster system theory, the review systematically summarizes the progress of coastal flood research in China, and then discusses existing problems in present studies and provide future research directions with regard to this issue. It is proposed that future studies need to strengthen research on adapting to climate change in coastal areas, including studies on the risk of multi- hazards and uncertainties of hazard impacts under climate change, risk assessment of key exposure (critical infrastructure) in coastal hotspots, and cost-benefit analysis of adaptation and mitigation measures in coastal areas. Efforts to improve the resilience of coastal areas under climate change should be given more attention. The research community also should establish the mechanism of data sharing among disciplines to meet the needs of future risk assessments, so that coastal issues can be more comprehensively, systematically, and dynamically studied.
Shore line change is considered as one of the most dynamic processes, which were mapped along the coast of Tiruvallur district by using topographic maps of 1976 and multi-temporal satellite images. The satellite images pertaining to 1988, 1991, 2006, 2010, 2013 and 2016 were used to extract the shorelines. It is important to map and monitor the HTL (High Tide Line) at frequent time intervals as the shoreline was demarcated by using visual interpretation technique from satellite images and topographic maps. Followed by this, an overlay analysis was performed to calculate areas of erosion and accretion in the study area. The results revealed that the coast of Tiruvallur district lost 603 ha and gained 630 ha due to erosion and accretion respectively. It was confirmed after the ground truth survey carried out in the study area. The high accretion of 178 ha was found nearby Pulicat Lake and low accretion of 19 ha was seen between Pulicat Lake and Kattupali Port. The high erosion area was found along the Pulicat Lake, Kattupali and Ennore ports, and Ennore creek mouth and southern Ennore such as Periya Kuppam, Chinna Kuppam, Kasi Koil Kuppam, and Thyagarajapuram. It may be concluded that the coastal erosion and accretion in the study area were mainly caused by anthropogenic and natural factors, which altered the coastal environment.
Flood risk analysis is the instrument by which floodplain and stormwater utility managers create strategic adaptation plans to reduce the likelihood of flood damages in their communities, but there is a need to develop a screening tool to analyze watersheds and identify areas that should be targeted and prioritized for mitigation measures. The authors developed a screening tool that combines readily available data on topography, groundwater, surface water, tidal information for coastal communities, soils, land use, and precipitation data. Using the outputs of the screening tool for various design storms, a means to identify and prioritize improvements to be funded with scarce capital funds was developed, which combines the likelihood of flooding from the screening tool with a consequence of flooding assessment based on land use and parcel size. This framework appears to be viable across cities that may be inundated with water due to sea-level rise, rainfall, runoff upstream, and other natural events. The framework was applied to two communities using the 1-day 100-year storm event: one in southeast Broward County with an existing capital plan and one inland community with no capital plan.
Marine geological maps of the Campania region have been constructed both to a 1:25.000 and to a 1:10.000 scale in the frame of the research projects financed by the Italian National Geological Survey, focusing, in particular, on the Gulf of Naples (Southern Tyrrhenian Sea), a complex volcanic area where volcanic and sedimentary processes strongly interacted during the Late Quaternary and on the Cilento Promontory offshore. In this paper, the examples of the geological sheets n. 464 “Isola di Ischia” and n. 502 “Agropoli” have been studied. The integration of the geological maps with the seismo-stratigraphic setting of the study areas has also been performed based on the realization of interpreted seismic profiles, providing interesting data on the geological setting of the subsurface. The coastal geological sedimentation in the Ischia and Agropoli offshore has been studied in detail. The mapped geological units are represented by: i) the rocky units of the acoustic basement (volcanic and/or sedimentary); ii) the deposits of the littoral environment, including the deposits of submerged beach and the deposits of toe of coastal cliff; iii) the deposits of the inner shelf environment, including the inner shelf deposits and the bioclastic deposits; iv) the deposits of the outer shelf environment, including the clastic deposits and the bioclastic deposits; v) the lowstand system tract; vi) the Pleistocene relict marine units; vii) different volcanic units in Pleistocene age. The seismo-stratigraphic data, coupled with the sedimentological and environmental data provided by the geological maps, provided us with new insights on the geologic evolution of this area during the Late Quaternary.
Copyright © by EnPress Publisher. All rights reserved.