Oil spill clean-up is a long-standing challenge for researchers to prevent serious environmental pollution. A new kind of oil-absorbent based on silicon-containing polymers (e.g., poly(dimethylsiloxane) (PDMS)) with high absorption capacity and excellent reusability was prepared and used for oil-water separation. The PDMS-based oil absorbents have highly interconnected pores with swellable skeletons, combining the advantages of porous materials and gels. On the other hand, polymer/silica composites have been extensively studied as high-performance functional coatings since, as an organic/inorganic composite material, they are expected to combine polymer flexibility and ease of processing with mechanical properties. Polymer composites with increased impact resistance and tensile strength without decreasing the flexibility of the polymer matrix can be achieved by incorporating silica nanoparticles, nanosand, or sand particles into the polymeric matrices. Therefore, polymer/silica composites have attracted great interest in many industries. Some potential applications, including high-performance coatings, electronics and optical applications, membranes, sensors, materials for metal uptake, etc., were comprehensively reviewed. In the first part of the review, we will cover the recent progress of oil absorbents based on silicon-containing polymers (PDMS). In the later details of the review, we will discuss the recent developments of functional materials based on polymer/silica composites, sand, and nanosand systems.
Three-dimensionally cross-linked polymer nanocomposite networks coated nano sand light-weight proppants (LWPs) were successfully prepared via ball-milling the macro sand and subsequently modifying the resultant nano sand with sequential polymer nanocomposite coating. The modified nano sand proppants had good sphericity and roundness. Thermal analyses showed that the samples can withstand up to 411 ℃. Moreover, the proppant samples’ specific gravity (S.G.) was 1.02–1.10 g/cm3 with excellent water dispersibility. Therefore, cross-linked polymer nanocomposite networks coated nano sand particles can act as potential candidates as water-carrying proppants for hydraulic fracturing operations.
Graphene oxide can be referred to as oxidized graphene. Similar to graphene, oxidized graphene possesses remarkable structural features, advantageous properties, and technical applications. Among polymeric matrices, conducting polymers have been categorized for p conjugated backbone and semiconducting features. In this context, doping, or nano-additive inclusion, has been found to enhance the electrical conduction features of conjugated polymers. Like other carbon nanostructures (fullerene, carbon nanotube, etc.), graphene has been used to reinforce the conjugated matrices. Graphene can be further modified into several derived forms, including graphene oxide, reduced graphene oxide, and functionalized graphene. Among these, graphene oxide has been identified as an important graphene derivative and nanofiller for conducting matrices. This overview covers essential aspects and progressions in the sector of conjugated polymers and graphene oxide derived nanomaterials. Since the importance of graphene oxide derived nanocomposites, this overview has been developed aiming at conductive polymer/graphene oxide nanocomposites. The novelty of this article relies on the originality and design of the outline, the review framework, and recent literature gathering compared with previous literature reviews. To the best of our knowledge, such an all-inclusive overview of conducting polymer/graphene oxide focusing on fundamentals and essential technical developments has not been seen in the literature before. Due to advantageous structural, morphological, conducting, and other specific properties, conductive polymer/graphene oxide nanomaterials have been applied for a range of technical applications such as supercapacitors, photovoltaics, corrosion resistance, etc. Future research on these high-performance nanocomposites may overcome the design and performance-related challenges facing industrial utilization.
In this study, the influence of sewage sludge ash (SSA) waste particle contents on the mechanical properties and interlaminar fracture toughness for mode I and mode II delamination of S-glass fiber-reinforced epoxy composites was investigated. Composite laminate specimens for tensile, flexural double-cantilever beam (DCB), and end-notched fracture (ENF) tests were prepared and tested according to ASTM standards with 5, 10, 15, and 20 wt% SSA-filled S-glass/epoxy composites. Property improvement reasons were explained based on optical and scanning electron microscopy. The highest improvement in tensile and flexural strength was obtained with a 10 wt% content of SSA. The highest mode I and mode II interlaminar fracture toughness’s were obtained with 15 wt% content of SSA. The mode I and mode II interlaminar fracture toughness improved by 33% and 63.6%, respectively, compared to the composite without SSA.
The application of nanotechnology in the food industry enables prioritization of consumers’ needs. Nanotechnology has the ability to provide new forms of control on food structure; therefore, this technology has higher industrial value. This paper briefly introduces the main concepts of nanotechnology and its correlation with size reduction performance. This paper also introduces the main nanobjects and their potential applications in food, and summarizes various studies and their applications in food industry.
Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Copyright © by EnPress Publisher. All rights reserved.