The role of agriculture in greenhouse gas emissions and carbon neutrality is a complex and important area of study. It involves both carbon sequestration, like photosynthesis, and carbon emission, such as land cultivation and livestock breeding. In Shandong Province, a major agricultural region in China, understanding these dynamics is not only crucial for local and national carbon neutrality goals, but also for global efforts. In this study, we utilized panel data spanning over two decades from 2000 to 2022 and closely examined agricultural carbon dynamics in 16 cities of the Shandong Province. The method from the Intergovernmental Panel on Climate Change (IPCC) was used for calculating agricultural carbon sinks, carbon emissions, and carbon surplus. The results showed that (1) carbon sink from crops in the Shandong Province experienced growth during the study period, closely associated with the rise in crop yields; (2) a significant portion of agricultural carbon emissions was attributable to gastrointestinal fermentation in cattle, and a reduction in the number of stocked cattle led to a fall in overall carbon emissions; (3) carbon surplus underwent a significant transition in 2008, turning from negative to positive, and the lowest value of carbon surplus was noticed in 2003, with agriculture sector reaching the carbon peak; (4) the spatial pattern of carbon surplus intensity distinctly changed before and after 2005, and from 2000 to 2005, demonstrating spatial aggregation. This research elucidates that agriculture in Shandong Province achieved carbon neutrality as early as 2008. This is a pivotal progression, as it indicates a balance between carbon emissions and absorption, highlighting the sector’s ability in maintaining a healthy carbon equilibrium.
Global CO2 emissions pose a serious threat of climate change for high-growth countries, requiring increased efforts to preserve the environment and meet growing economic needs through the use of renewable energies. This research significantly enhances the current literature by filling a void and differentiating between short-term and long-term impacts across economic growth, renewable energy consumption, energy intensity, and CO2 emissions in BRIC countries from 2002 to 2019. In contrast to approaches that analyze global effects, this study’s focus on short and long-term effects offers a more dependable insight into energy and environmental research. The empirical results confirmed that the effect of economic growth on CO2 emissions is positive both in the short and long term. Moreover, the effect of energy consumption is negative in the short term and positive in the long term. The effect of energy intensity is positive in the short term and negative in the long term. Accordingly, policy recommendations must be adopted to ensure that these economies respond to the notion of sustainable development and the relationship with the environment. BRIC countries must strengthen their industries in the long term in favor of the use of renewable energies by introducing innovation and technology. These economies face the challenge of a transition to renewable energy sources by creating a new energy and industrial sector environment that is more environmentally friendly atmosphere.
From the perspective of the corporate life cycle, this study investigates the transmission mechanism of ‘technological innovation-financing constraints-carbon emission reduction’ in energy companies using panel data and mediating models, focusing on listed energy companies from 2014 to 2020. It explores the stage characteristics of this mechanism during different life cycle phases and conducts heterogeneity tests across industries and regions. The results reveal that technological innovation positively influences carbon emission reduction in energy enterprises, demonstrating significant life cycle stage characteristics, specifically more pronounced in mature companies than in growing or declining companies. Financing constraints play a mediating role between technological innovation and carbon reduction, but this is only effective during the growth and maturity stages. Further research shows that the impact of technological innovation on carbon emission reduction and the mediating role of financing constraints exhibit heterogeneity across different stages of the life cycle, industries, and regions. The conclusions of this paper provide references for energy companies in planning rational emission reduction strategies and for government departments in policy-making.
The purpose of this study is to examine how financial slack and board gender diversity affect carbon emission disclosure and how that disclosure affects firm value in energy sector companies that are listed on the Indonesian stock exchange between 2017 and 2021. Annual reports and sustainability sources provide secondary data for this quantitative study. Purposive sampling was employed in this investigation, including nine companies and a five-year observation period. Thus, 45 samples altogether were employed in the present study. The partial least squares approach is the data analysis strategy used in this investigation. The study’s findings indicate that the Gender Diversity Board does not significantly affect carbon emission disclosure and significantly influences firm value. Financial slack significantly affects carbon emission disclosure but does not directly affect firm value. Financial slack and board gender diversity through carbon emission disclosure have no significant effect on firm value.
Urbanization process affects global socio-economic development. Originally tied to modernization and industrialization, current urbanization policy is focused on productivity, economic activities, and environmental sustainability. This study examines impact of urbanization in various regions of Kazakhstan, focusing on environmental, social, labor, industrial, and economic indicators. The study aims to assess how different indicators influence urbanization trends in Kazakhstan, particularly regarding environmental emissions and pollution. It delves into regional development patterns and identifies key contributing factors. The research methodology is based on classical economic theories of urbanization and modern interpretations emphasizing sustainability and socio-economic impacts and includes two stages. Shannon entropy measures diversity and uncertainty in urbanization indicators, while cluster analysis identifies regional patterns. Data from 2010 to 2022 for 17 regions forms the basis of analysis. Regions are categorized into groups based on urbanization levels leaders, challenged, stable, and outliers. This classification reveals disparities in urban development and its impacts. Findings stress the importance of integrating environmental and social considerations into urban planning and policies. Targeted interventions based on regional characteristics and urbanization levels are recommended to enhance sustainability and socio-economic outcomes. Tailored urban policies accommodating specific regional needs are crucial. Effective management and policy-making demand a nuanced understanding of these impacts, emphasizing region-specific strategies over a uniform approach.
India has experienced notable advancements in trade liberalization, innovation tactics, urbanization, financial expansion, and sophisticated economic development. Researchers are focusing more on how much energy consumption of both renewable and non-renewable accounts for overall system energy consumption in light of these dynamics. In order to gain an understanding of this important and contentious issue, we aim to examine the impact of trade openness, inventions, urbanization, financial expansion, economic development, and carbon emissions affected the usage of renewable and non-renewable energy (REU and N-REU) in India between 1980 and 2020. We apply the econometric approach involving unit root tests, FE-OLS, D-OLS, and FM-OLS, and a new Quantile Regression approach (QR). The empirical results demonstrate that trade openness, urbanization and CO2 emissions are statistically significant and negatively linked with renewable energy utilization. In contrast, technological innovations, financial development, and economic development in India have become a source of increase in renewable energy utilization. Technological innovations were considered negatively and statistically significant in connection with non-renewable energy utilization, whereas the trade, urbanization, financial growth, economic growth, and carbon emissions have been established that positively and statistically significant influence non-renewable energy utilization. The empirical results of this study offer some policy recommendations. For instance, as financial markets are the primary drivers of economic growth and the renewable energy sector in India, they should be supported in order to reduce CO2 emissions.
Copyright © by EnPress Publisher. All rights reserved.