The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
Graphene and derivatives have been frequently used to form advanced nanocomposites. A very significant utilization of polymer/graphene nanocomposite was found in the membrane sector. The up-to-date overview essentially highlights the design, features, and advanced functions of graphene nanocomposite membranes towards gas separations. In this concern, pristine thin layer graphene as well as graphene nanocomposites with poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), polyimide, and other matrices have been perceived as gas separation membranes. In these membranes, the graphene dispersion and interaction with polymers through applying the appropriate processing techniques have led to optimum porosity, pore sizes, and pore distribution, i.e., suitable for selective separation of gaseous molecules. Consequently, the graphene-derived nanocomposites brought about numerous revolutions in high-performance gas separation membranes. The structural diversity of polymer/graphene nanocomposites has facilitated the membrane selective separation, permeation, and barrier processes, especially in the separation of desired gaseous molecules, ions, and contaminants. Future research on the innovative nanoporous graphene-based membrane can overcome design/performance-related challenging factors for technical utilizations.
Recent technological advances in the fields of biomaterials and tissue engineering have spurred interest in biopolymers for various biomedical applications. The advantage of biopolymers is their favorable characteristics for these applications, among which proteins are of particular importance. Proteins are explored widely for 3D bioprinting and tissue engineering applications, wound healing, drug delivery systems, implants, etc., and the proteins mainly available include collagen, gelatin, albumin, zein, etc. Zein is a plant protein abundantly present in corn endosperm, and it is about 80% of total corn protein. It is a highly renewable source, and zein has been reported to be applicable in different industrial applications. Lately, it has gained attention in biomedical applications. This research interest in zein is on account of its biocompatibility, non-toxicity, and certain unique physico-chemical properties. Zein comes under the GRAS category and is considered safe for biomedical applications. The hydrophobic nature of this protein gives it an added advantage and has wider applications in drug delivery. This review focuses on details about zein protein, its properties, and potential applications in biomedical sectors.
Stimuli-responsive, smart, or intelligent polymers are materials that significantly change their physical or chemical properties when there is a small change in the surrounding environment due to either internal or external stimuli. In the last two decades or so, there has been tremendous growth in the strategies to develop various types of stimuli-responsive polymer (SRP) materials/systems that are suitable for various fields, including biomedical, material science, nanotechnology, biotechnology, surface and colloid sciences, biochemistry, and the environmental field. The wide acceptability of SRPs is due to their availability in different architectural forms such as scaffolds, aggregates, hydrogels, pickering emulsions, core-shell particles, nanogels, micelles, membranes, capsules, and layer-by-layer films. The present review focuses on different types of SRPs, such as physical, chemical, and biological, and various important applications, including controlled drug delivery (CDD), stabilization of colloidal dispersion, diagnostics (sensors and imaging), tissue engineering, regenerative medicines, and actuators. The applications of SRPs have immense potential in various fields, and the author hopes these polymers will add a new field of applications through new concepts.
Copyright © by EnPress Publisher. All rights reserved.