Sanitation challenges are growing at unprecedented rates in the Middle East and North Africa (MENA) region, specifically in the country of Jordan, where more adversities are faced in the provision of inclusive and sustainable sanitation for marginalized communities. The overloaded water supply systems, strained by high population density in the face of political instability manifests itself in poor public health. How countries in the MENA region plan to handle these problems and improve the sanitation infrastructure is the starting point for this work. We aim to develop a comprehensive and multidisciplinary framework between stakeholders, aligned with the Sustainable Development Goals (SDGs), with a specific emphasis on SDG 6, for providing feasible, community-oriented approaches to sanitation issues in disenfranchised communities in Jordan through the Initiative Sanitation and Hygiene Networking in Jordanian Poverty Pockets (ISNJO) project. The findings will be used to formulate strategic guidelines and inform the development and subsequent initiation of innovative and multidisciplinary initiatives to tackle the sanitation and water scarcity challenges at hand.
This study aimed to determine the socio-economic poverty status of those living in rural areas using data surveys obtained from household expenditure and income. Machine learning-based classification and clustering models were proven to provide an overview of efforts to determine similarities in poverty characteristics. Efforts to address poverty classification and clustering typically involve comprehensive strategies that aim to improve socio-economic conditions in the affected areas. This research focuses on the combined application of machine learning classification and clustering techniques to analyze poverty. It aims to investigate whether the integration of classification and clustering algorithms can enhance the accuracy of poverty analysis by identifying distinct poverty classes or clusters based on multidimensional indicators. The results showed the superiority of machine learning in mapping poverty in rural areas; therefore, it can be adopted in the private sector and government domains. It is important to have access to relevant and reliable data to apply these machine learning techniques effectively. Data sources may include household surveys, census data, administrative records, satellite imagery, and other socioeconomic indicators. Machine learning classification and clustering analyses are used as a decision support tool to gain an understanding of poverty data from each village. These strategies are also used to describe the profile of poverty clusters in the community in terms of significant socio-economic indicators present in the data. Village clusters based on an analysis of existing poverty indicators are grouped into high, moderate, and low poverty levels. Machine learning can be a valuable tool for analyzing and understanding poverty by classifying individuals or households into different poverty categories and identifying patterns and clusters of poverty. These insights can inform targeted interventions, policy decisions, and resource allocation for poverty reduction programs.
Objective: This research analyzed the psychometric properties of the Ambivalent Classism Inventory (ICA) in Peru. Methodology: A critical review of literature related to poverty, inequality, and structural gaps was conducted, involving 882 participants aged 14 to 89 years (M = 24.61, SD = 9.07). Results: Exploratory-confirmatory factor analyses were satisfactory, finding a similar factorial structure to the original scale and the adaptation (hostile classism, protective paternalism, and complementary class differentiation). Regarding items, there was a reduction, leaving only 12; however, comparing alternative models, the three-factor structure with 12 reagents showed adequate fit (χ2 = 214.588, df = 51, p < 0.001; CFI = 0.996; RMSEA = 0.060; SRMR = 0.033), allowing for invariance testing. Practical Implications: The scale allows for investigating attitude profiles of individuals with privileged social class. Contribution: The instrument is a valuable contribution, considering that the nation has a high poverty rate, leading to economic, political, and social inequality among the population.
The potential of entrepreneurship to reduce poverty is closely tied to critical factors such as access to finance, training and education, networks and social capital, and supportive regulatory environments. Understanding and addressing these underlying issues through the lens of the Social Capital theory can help foster an entrepreneurial spirit in cities and mitigate poverty through business and community development. This paper explores the insights and standpoints of key stakeholders about poverty in Saint John and its impact on entrepreneurship. The study uses a quantitative method and analyzes data from surveys with stakeholders. The results show that social isolation, system inflexibility, individual issues, housing, and financial support programs are significant poverty challenges in Saint John, and these issues have implications for entrepreneurship. By integrating Social Capital Theory into policy initiatives, policymakers can enhance community resilience and empower vulnerable individuals. This application of social capital principles provides a holistic framework for designing effective poverty-reduction measures, offering transformative insights applicable not only to Saint John but also to diverse small cities. The study contributes a nuanced understanding of poverty’s impact on entrepreneurship, advocating for inclusive strategies that resonate with the social fabric of communities.
Copyright © by EnPress Publisher. All rights reserved.