The objective of this study is to explore the relationship between changing weather conditions and tourism demand in Thailand across five selected provinces: Chonburi (Pattaya), Surat Thani, Phuket, Chiang Mai, and Bangkok. The annual data used in this study from 2012 to 2022. The estimation method is threshold regression (TR). The results indicate that weather conditions proxied by the Temperature Humidity Index (THI) significantly affect tourism demand in these five provinces. Specifically, changes in weather conditions, such as an increase in temperature, generally result in a decrease in tourism demand. However, the impact of weather conditions varies according to each province’s unique characteristics or highlights. For example, tourism demand in Bangkok is not significantly affected by weather conditions. In contrast, provinces that rely heavily on maritime tourism, such as Chonburi (Pattaya), Phuket, and Surat Thani, are notably affected by weather conditions. When the THI in each province rises beyond a certain threshold, the demand for tourism in these provinces by foreign tourists decreases significantly. Furthermore, economic factors, particularly tourists’ income, significantly impact tourism demand. An increase in the income of foreign tourists is associated with a decrease in tourism in Pattaya. This trend possibly occurs because higher-income tourists tend to upgrade their travel destinations from Pattaya to more upscale locations such as Phuket or Surat Thani. For Thai tourists, an increase in income leads to a decrease in domestic tourism, as higher incomes enable more frequent international travel, thereby reducing tourism in the five provinces. Additionally, the study found that the availability and convenience of accommodation and food services are critical factors influencing tourism demand in all the provinces studied.
This article examines how financial technology determines bank performance in different EU countries. The answer to that question would allow banks to choose their development policy. The paper focuses on the main and most popular bank services that are linked to financial technology. A SWOT analysis of FinTech is also presented to show the benefits and drawbacks of FinTech. FinTech-based services are very diverse and are provided by financial firms and banks alike. This paper looks at the financial technology provided by banks: internet usage (internet banking), number of ATMs, credit transfers in a country, percentage of the population in a country holding a debit or credit card and whether that population has received or made a digital payment. Using the multi-criteria assessment methods of CRITIC and EDAS, the authors analysed and compared the countries of the European Union and the financial technology used in them. As a result of the application of these methods, the EU countries under consideration were ranked in terms of the use of financial technology. Subsequently, three banks from different countries with different levels of the use of financial technology were selected for the study. For these banks, financial ratios of profitability were calculated to characterise their performance. Correlation and pairwise regression analyses between the banks’ profitability ratios and financial technology were used to assess the relationship and influence between these ratios. The main conclusion of the study focuses on the extent to which financial technology influences the performance of banks in the selected countries. It is likely that further research will try to take into account the size of the country’s population when analysing all financial technologies. Researchers also needed to find out what influence financial technologies have on the such financial indicators as operational efficiency (costs), financial stability, and capital adequacy.
Climate change is the most important environmental problem of the 21st century. Severe climate changes are caused by changes in the average temperature and rainfall can affect economic sectors. On the other hand, the impact of climate change on countries varies depending on their level of development. Therefore, the aim of this paper is to investigate the relationship between climate changes and economic sectors in developed and developing countries for the period 1990–2021. For this purpose, a novel approach based on wavelet analysis and SUR model has been used. In this case, first all variables are decomposed into different frequencies (short, medium and long terms) using wavelet decomposition and then a SUR model is applied for the examination of climate change effects on agriculture, industry and services sectors in developed and developing countries. The findings indicate that temperature and rainfall have a significant negative and positive relationship with the agriculture, industry and services sectors in developed and developing countries, respectively. But severity of the negative effects is greater in the agricultural and industrial sectors in all frequencies (short, medium and long terms) compared to service sector. Furthermore, the severity of the positive effects is greater in the agricultural sector in all frequencies of developing countries compared to the industrial and services sectors. Finally, developing countries are more vulnerable to climate change in all sectors compared to developed countries.
This study examines factors associated with an increasingly poor perception of the novel coronavirus in Africa using a designed electronic questionnaire to collect perception-based information from participants across Africa from twenty-one African countries (and from all five regions of Africa) between 1 and 25 February 2022. The study received 66.7% of responses from West Africa, 12.7% from Central Africa, 4.6% from Southern Africa, 15% from East Africa, and 1% from North Africa. The majority of the participants are Nigerians (56%), 14.1% are Cameroonians, 8.7% are Ghanaians, 9.3% are Kenyans, 2% are South Africans, 2.1% are DR-Congolese, 1.6% are Tanzanians, 1.2% are Rwandans, 0.4% are Burundians, and others are Botswana’s, Chadians, Comoros, Congolese, Gambians, Malawians, South Sudanese, Sierra Leoneans, Ugandans, Zambians, and Zimbabweans. All responses were coded on a five-point Likert scale. The study adopts descriptive statistics, principal component analysis, and binary logistic regression analysis for the data analysis. The descriptive analysis of the study shows that the level of ignorance or poor “perception” of COVID-19 in Africa is very high (87% of individuals sampled). It leads to skepticism towards complying with preventive measures as advised by the WHO and directed by the national government across Africa. We adopted logistic regression analysis to identify the factors associated with a poor perception of the virus in Africa. The study finds that religion (belief or faith) and media misinformation are the two leading significant causes of ignorance or poor “perception” of COVID-19 in Africa, with log odd of 0.4775 (resulting in 1.6120 odd ratios) and 1.3155 (resulting in 3.7265 odd ratios), respectively. The study concludes that if the poor attitude or perception towards complying with the preventive measures continues, COVID-19 cases in Africa may increase beyond the current spread.
India has experienced notable advancements in trade liberalization, innovation tactics, urbanization, financial expansion, and sophisticated economic development. Researchers are focusing more on how much energy consumption of both renewable and non-renewable accounts for overall system energy consumption in light of these dynamics. In order to gain an understanding of this important and contentious issue, we aim to examine the impact of trade openness, inventions, urbanization, financial expansion, economic development, and carbon emissions affected the usage of renewable and non-renewable energy (REU and N-REU) in India between 1980 and 2020. We apply the econometric approach involving unit root tests, FE-OLS, D-OLS, and FM-OLS, and a new Quantile Regression approach (QR). The empirical results demonstrate that trade openness, urbanization and CO2 emissions are statistically significant and negatively linked with renewable energy utilization. In contrast, technological innovations, financial development, and economic development in India have become a source of increase in renewable energy utilization. Technological innovations were considered negatively and statistically significant in connection with non-renewable energy utilization, whereas the trade, urbanization, financial growth, economic growth, and carbon emissions have been established that positively and statistically significant influence non-renewable energy utilization. The empirical results of this study offer some policy recommendations. For instance, as financial markets are the primary drivers of economic growth and the renewable energy sector in India, they should be supported in order to reduce CO2 emissions.
Copyright © by EnPress Publisher. All rights reserved.