This study examines the aggregate consumption function of Saudi Arabia from 2000 to 2022, focusing on identifying key determinants of household consumption and evaluating the impacts of disposable income, household wealth, government expenditure, interest rates, and oil revenues. the research uses advanced econometric methods, including the autoregressive distributed lag (ARDL) model and Johansen cointegration test, to analyze the relationships among these variables. the findings reveal that disposable income, household wealth, and government expenditure significantly and positively influence consumption, whereas interest rates show a negative correlation. oil revenues also play a critical role, reflecting the country’s economic reliance on oil. the study highlights the necessity for economic diversification to reduce the impact of oil price volatility on household income and consumption stability. The results offer crucial insights for policymakers, emphasizing the need for strategies that enhance household income and wealth, maintain robust public sector spending, and effectively manage interest rates. these findings also support the importance of consistent and predictable income sources for sustaining consumption. additionally, this study suggests directions for future research, including developing sophisticated forecasting models to predict consumption trends and exploring other influencing factors such as demographic shifts and technological progress.
Modern technologies have intensified innovations and necessitated changes in public service processes and operations. Continuous employee learning development (CELD) is one means of the molecule-atom that keep employees motivated and sustain competitiveness. The study explored the efficacy of CELD in relation to modern technology in the South African (SA) public service departments between 2014 to 2023 era. Departments are faced with challenge of equipping their employees with adequate professional and technical skills for both the present and the future in order to deliver specific government priorities. Data for the study were gathered utilizing a qualitative semi-structured e-questionnaire. The study sample consisted of 677 human capital development practitioners from national and provincial government departments in SA. The inefficacy CELD and the inadequacy of technological infrastructure and service delivery can be attributed to the failure by executive management and senior managers to invest in CELD to prepare employees for digital world. It is recommended that departments should use Ruggles’s knowledge management, Kirkpatrick’s training, and Becker and Schultz’s human capital models as sound measurement tools in order to gain a true return on investment. The study adds pragmatic insight into the value of CELD in the new technological environment in public service departments.
In the evolving landscape of the 21st century, universities are at the forefront of re-imagining their infrastructural identity. This conceptual paper delves into the transformative shifts witnessed within university infrastructure, focusing on the harmonisation of tangible physical assets and the expanding world of digital evolution. As brick-and-mortar structures remain pivotal, integrating digital platforms rapidly redefines the academic landscape, optimising learning and administrative experiences. The modern learning paradigm, enriched by this symbiotic relationship, offers dynamic, flexible, and comprehensive educational encounters, thereby transcending traditional spatial and temporal constraints. Therefore, this paper accentuates the broader implications of this infrastructural metamorphosis, particularly its significant role in driving economic development. The synergistic effects of physical and digital infrastructures enhance academic excellence and position universities as key players in addressing and navigating global challenges, setting forth a resilient and forward-looking educational blueprint for the future. In conclusion, integrating physical and digital infrastructures within universities heralds a transformative era, shaping a holistic, adaptable, and enriched academic environment poised to meet 21st-century challenges. This study illuminates the symbiotic relationship between tangible university assets and digital innovations, offering insights into their collective impact on modern education and broader economic trajectories.
Tropical peat swamp is an essential ecosystem experiencing increased degradation over the past few decades. Therefore, this study used the social-ecological system (SES) perspective to explain the complex relationship between humans and nature in the Sumatran Peatlands Biosphere Reserve. The peat swamp forest has experienced a significant decline, followed by a significant increase in oil palm and forest plantations in areas designated for peat protection. Human systems have evolved to become complex and hierarchical, constituting individuals, groups, organizations, and institutions. Studies on SES conducted in the tropical peatlands of Asia have yet to address the co-evolutionary processes occurring in this region, which could illustrate the dynamic relationship between humans and nature. This study highlights the co-evolutionary processes occurring in the tropical peatland biosphere reserve and provides insights into their sustainability trajectory. Moreover, the coevolution process shows that biosphere reserve is shifting toward an unsustainable path. This is indicated by ongoing degradation in three zones and a lack of a comprehensive framework for landscape-scale water management. Implementing landscape-scale water management is essential to sustain the capacity of peatlands social-ecological systems facing disturbances, and it is important to maintain biodiversity. In addition, exploring alternative development pathways can help alter these trajectories toward sustainability.
The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant interest in modern agriculture. The appeal of AI arises from its ability to rapidly and precisely analyze extensive and complex information, allowing farmers and agricultural experts to quickly identify plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has gained significant attention in the world of agriculture and agronomy. By harnessing the power of AI to identify and diagnose plant diseases, it is expected that farmers and agricultural experts will have improved capabilities to tackle the challenges posed by these diseases. This will lead to increased effectiveness and efficiency, ultimately resulting in higher agricultural productivity and reduced losses caused by plant diseases. The use of artificial intelligence (AI) in the detection and diagnosis of plant diseases has resulted in significant benefits in the field of agriculture. By using AI technology, farmers and agricultural professionals can quickly and accurately identify illnesses affecting their crops. This allows for the prompt adoption of appropriate preventative and corrective actions, therefore reducing losses caused by plant diseases.
Copyright © by EnPress Publisher. All rights reserved.