Analyzing ecosystem service values (ESV) is crucial for achieving sustainable development. The main objective of this study was to assess the ecosystem services of the Cisadane watershed in Indonesia, with specific goals: (i) examining the spatiotemporal dynamics of ESV using multi-year land use and land cover (LULC) data from 2000 to 2021, (ii) exploring trade-offs and synergies among various ecosystem services, and (iii) investigating the sensitivity of ESV to changes in LULC. The results unveiled a significant decrease in forested areas (21.2%) and rice fields (10.2%), leading to a decline in ESV of $196.37 billion (33.17%) from 2010 to 2021. Throughout the period from 2000 to 2021, interactions between ESV were mainly synergistic. Projected from the baseline year (2021), the decline in ESV is expected to persist, ranging from $24.78 billion to $124.28 million by 2030 and from $45.78 billion to $124.28 million by 2050. The total estimated ecosystem values exhibited an inelastic response in terms of ecosystem value coefficients. The study also emphasizes an inelastic response in total estimated ESV coefficient concerning ecosystem value coefficients. These findings underscore the urgent need for targeted conservation efforts and sustainable land management practices to mitigate the further decline in ecosystem services and safeguard the long-term well-being of the Cisadane watershed and its inhabitants.
Pattaya City is a well-known tourist destination in Thailand, famous for its beautiful beachfront, lively nightlife, and stunning natural scenery. Since 2019, the Eastern Special Development Zone Act, the so-called EEC (Eastern Economic Corridor), has positioned the city as a focal point for Meetings, Incentives, Conferences, and Exhibitions (MICE), boosting its tourism-driven economy. Infrastructure improvements in the region have accelerated urban development over the past decade. However, it is uncertain whether this growth primarily comes from development within existing areas or the expansion of urban boundaries and what direction future growth may take. To investigate this, research using the Cellular Automata-Markov model has been conducted to analyze land use changes and urban growth patterns in Pattaya, using land use data from the Department of Land for 2013 and 2017. The findings suggest an upcoming city expansion along the motorway, indicating that infrastructure improvements could drive rapid urbanization in coastal areas. This urban expansion emphasizes the need for urban management and strategic land use planning in coastal cities.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
Copyright © by EnPress Publisher. All rights reserved.