Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
An alternative for sustainable management in the cultivation of Capsicum annuum L. has focused on the use of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This research selected PGPRPGPR and AMF based on their effect on Bell Pepper and Jalapeño bell pepper plants. Five bacterial strains isolated from different localities in the state of Mexico (P61 [Pseudomonas tolaasii], A46 [P. tolaasii], R44 [Bacillus pumilus], BSP1.1 [Paenibacillus sp.] and OLs-Sf5 [Pseudomonas sp.]) and 3 AMF treatments (H1 [consortium isolated from Chile rhizosphere in the state of Puebla], H2 [Rhizophagus intraradices] and H3 [consortium isolated from lemon rhizosphere from the state of Tabasco]). In addition, a fertilized treatment (Steiner solution 25%) and an absolute control were included. Jalapeño bell pepper “Caloro” and Bell Pepper “California Wonder” seedlings were inoculated with AMF at sowing and with CPB 15 days after emergence, and grown under controlled environment chamber conditions. In Jalapeño bell pepper, the best bacterial strain was P61 and the best AMF treatment was H1; in Bell Pepper the best strain was R44 and the best AMF were H3 and H1. These microorganisms increased the growth of jalapeño bell pepper and Bell Pepper seedlings compared to the unfertilized control. Likewise, P61 and R44 positively benefited the photosynthetic capacity of PSII.
Clinical/methodological problem: The identification of clinically significant prostate carcinomas while avoiding overdiagnosis of low-malignant tumors is a challenge in routine clinical practice. Standard radiologic procedures: Multiparametric magnetic resonance imaging (MRI) of the prostate acquired and interpreted according to PI-RADS (Prostate Imaging Reporting and Data System Guidelines) is accepted as a clinical standard among urologists and radiologists. Methodological innovations: The PI-RADS guidelines have been newly updated to version 2.1 and, in addition to more precise technical requirements, include individual changes in lesion assessment. Performance: The PI-RADS guidelines have become crucial in the standardization of multiparametric MRI of the prostate and provide templates for structured reporting, facilitating communication with the referring physician. Evaluation: The guidelines, now updated to version 2.1, represent a refinement of the widely used version 2.0. Many aspects of reporting have been clarified, but some previously known limitations remain and require further improvement of the guidelines in future versions.
Context: Noise in the work environment, in all types of productive activities, represents a hazard and has not really been valued in its real dimension. Little has been seen that stakeholders have determined the urgency of managing noise control programs. Therefore, losses resulting from medical treatment and absenteeism, represented in health care and social services, result in hidden work-related costs that directly affect the gross domestic product in any country.
Method: This article compiles different case studies from around the world. The studies were divided for review into general studies on the effects of workforce noise and then particularized according to the effects of industrial noise on workers’ health. At a control level, the assessment and measurement of noise is defined through the use of tools such as noise maps and their respective derivations, in addition to spatial databases.
Results: According to the collection of information and its analysis, we observe that in the medium term, the economies will be diminished in an important percentage due to the consequences generated by the exposure to noise. Specific information can be found in the development of the article.
Conclusions: The data provided by the case studies point to the need for Colombia, a country that is no stranger to this phenomenon, and which additionally has the great disadvantage of not having significant studies in the field of noise analysis, should strengthen studies based on spatial data as a mechanism for measurement and control.
Financing: Fundación universitaria Los Libertadores.
The coupling coordination degree model is used to analyze the change law of the inherent coupling relationship between the forest economy and the ecological environment system in Heilongjiang Province from 2006 to 2018 and its causes. The results show that by combining the coupling relationship with the relative priority of under-forest economic development, the coupling relationship change can be divided into three stages, the coupling coordination degree from 2006 to 2009 is mainly on the verge of imbalance, and the under-forest economic development lags behind the development of the ecological environment. From 2010 to 2012, the coupling coordination degree changed from the reluctant coupling stage to the stage on the verge of imbalance, and the forest economy was ahead of the ecological environment development. From 2013 to 2018, the degree of coupling and coordination was in the reluctant coupling stage, and the under-forest economy and the ecological environment continued to develop in synchronize and in harmony. Therefore, according to the research results, it is proposed to establish the principle of ecological priority, adhere to the development of characteristics, improve the level of science and technology, and rationally develop the under-forest economic industry, so as to promote the coupling and coordinated development of the under-forest economy and ecological environment system in Heilongjiang Province.
Copyright © by EnPress Publisher. All rights reserved.