The exploitation of timber has had a profound impact on tropical forest areas and their structures. This study assessed the effect of selective logging on natural regeneration and soil characteristics in post-loading bay sites at the Pra-Anum forest reserve in Ghana, West Africa. The results showed no difference in the number of species enumerated in the loading bays and the undisturbed area. More trees were observed in the RAT and RNT plots than in the undisturbed area. Relative to the RAT plot, species on the RNT and the undisturbed area were less diverse and less evenly distributed. Mean tree height, diameter, and basal area were higher in the RAT and RNT plots than in the undisturbed plots. Soil bulk density was lower in the RAT and undisturbed plot than in the RAT plot and increased with increased depth. Soil organic matter was 44% and 27% more in the undisturbed and RAT plots, respectively, than in the RNT plot and accounted for 84.75%, 83.97% and 45.33% of variations in soil bulk density, pH, and CEC. The study provides insight into the need to rehabilitate highly disturbed areas in forests, particularly the addition of topsoil on loading bays, skid trails, roads, and gaps after logging to improve the productivity of the forest soils.
The obtaining of new data on the transformation of parent materials into soil and on soil as a set of essential properties is provided on the basis of previously conducted fundamental studies of soils formed on loess-like loams in Belarus (15,000 numerical indicators). The study objects are autochthonous soils of uniform granulometric texture. The basic properties without which soils cannot exist are comprehensively considered. Interpolation of factual materials is given, highlighting the essential properties of soils. Soil formation is analyzed as a natural phenomenon depending on the life activity of biota and the water regime. Models for differentiation of the chemical profile and bioenergy potential of soils are presented. The results of the represented study interpret the available materials taking into account publications on the biology and water regime of soils over the past 50 years into three issues: the difference between soil and soil-like bodies; the soil formation as a natural phenomenon of the mobilization of soil biota from the energy of the sun, the atmosphere, and the destruction of minerals in the parent materials; and the essence of soil as a solid phase and as an ecosystem. The novelty of the article study is determined by the consideration of the priority of microorganisms and water regime in soil formation, chemical-analytical identification of types of water regime, and determination of the water regime as a marker of soil genesis.
Herein, we report a facile preparation of super-hydrophilic sand by coating the sand particles with cross-linked polyacrylamide (PAM) hydrogels for enhanced water absorption and controlled water release aimed at desert agriculture. To prepare the sample, 4 wt% of aqueous PAM solution is mixed with organic cross-linkers of hydroquinone (HQ) and hexamethylenetetramine (HMT) in a 1:1 weight ratio and aqueous potassium chloride (KCl) solution. A specific amount of the above solution is added to the sand, well mixed, and subsequently cured at 150 °C for 8 h. The prepared super-hydrophilic sands were characterized by Fourier-transform infrared spectroscopy (FT-IR) for chemical composition and X-ray diffraction (XRD) for successful polymer coating onto the sand. The water storage for the samples was studied by absorption kinetics at various temperature conditions, and extended water release was studied by water desorption kinetics. The water swelling ratio for the super-hydrophilic sand has reached a maximum of 900% (9 times its weight) at 80 °C within 1 h. The desorption kinetics of the samples showed that the water can be stored for up to a maximum of 3 days. Therefore, super-hydrophilic sand particles were successfully prepared by coating them with PAM hydrogels, which have great potential to be used in sustainable desert agriculture.
In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.
The chemical reinforcement of sandy soils is usually carried out to improve their properties and meet specific engineering requirements. Nevertheless, conventional reinforcement agents are often expensive; the process is energy-intensive and causes serious environmental issues. Therefore, developing a cost-effective, room-temperature-based method that uses recyclable chemicals is necessary. In the current study, poly (styrene-co-methyl methacrylate) (PS-PMMA) is used as a stabilizer to reinforce sandy soil. The copolymer-reinforced sand samples were prepared using the one-step bulk polymerization method at room temperature. The mechanical strength of the copolymer-reinforced sand samples depends on the ratio of the PS-PMMA copolymer to the sand. The higher the copolymer-to-sand ratio, the higher the sample’s compressive strength. The sand (70 wt.%)-PS-PMMA (30 wt.%) sample exhibited the highest compressive strength of 1900 psi. The copolymer matrix enwraps the sand particles to form a stable structure with high compressive strengths.
Knowledge of the presence of heavy metals in soils of agricultural areas is important to prevent their accumulation in cultivated plants. The objective of the present investigation was to evaluate the total concentrations and fractions of heavy metals Cd, Pb, Zn, Fe, Mn, Ni, Cu, Cr and Co in the tobacco-growing area of Pinar del Río, Cuba and their relationship with the physicochemical properties of soil. For the study, 59 samples of three types of soils were collected at 20 cm depth. The pseudo-total concentrations of metals in the soils are low and lower than the prevention values registered for Cuban soils. In general, the heavy metals studied present a high affinity for the most stable fractions of the soil, which means a low risk of transfer to the tobacco crop or accumulation in groundwater. The pseudo-total concentrations of heavy metals were low, below the alert values established for soils in the region. The heavy metals studied were mainly associated with the residual fraction, the second fraction with the highest association with metals was that linked to manganese and iron oxides. The principal component analysis showed that their main source is pedogenetic and that these elements are closely related to cation exchange capacity and calcium content.
Copyright © by EnPress Publisher. All rights reserved.