This study aims to examine the impact of an innovative self-directed professional development (SDPD) model on fostering teachers’ professional development and improving their ability to manage this development independently. A quantitative research method was adopted, involving 60 participants from Almaty State Humanitarian and Pedagogical College No. 2, Almaty, Kazakhstan. Descriptive and inferential statistics were used to assess the SDPD model’s effectiveness, specifically in promoting teacher engagement, adoption of new pedagogical techniques, and improvement in reflective practices. The study findings reveal that teachers, particularly in developing regions, often face challenges in accessing formal professional development programs. The implementation of the SDPD model addresses these barriers by providing teachers with the tools and strategies required for self-improvement, regardless of geographic or economic constraints. The study participants in the pilot phase showed increased engagement with new pedagogical methods, improved reflective practices, and greater adaptability to emerging educational technologies. The algorithmic aspect of the model streamlined the professional development process, while the activity-based approach ensured that learning remained practical and relevant to teachers’ everyday needs. By offering a clear framework for continuous improvement, the model addresses the gaps in formal training access and cultivates a culture of lifelong learning. These findings suggest that the SDPD model can contribute to elevating teaching standards globally, particularly in regions with limited professional development resources.
The objective of this study was to examine the impact of utilizing smart algorithms on enhancing the operational performance of sports facilities in the Kingdom of Saudi Arabia. These algorithms, based on principles and concepts of artificial intelligence, aim to achieve functions such as learning, decision-making, data analysis, pattern recognition, planning, and problem-solving. The study aimed to identify the extent to which smart algorithms are utilized in sports facilities, assess the level of operational performance, explore the correlation between the use of smart algorithms and operational performance, and predict the level of operational performance based on the use of smart algorithms. The study employed a descriptive approach, specifically utilizing a survey study method. Participants included chairmen and members of boards of directors, executive directors, sports directors, administrators, specialists, and members of various committees. The study sample was intentionally selected from different categories within the study population. Two questionnaires were used to collect data from 325 participants. The findings revealed a lack of utilization of smart algorithms in sports facilities in the Kingdom of Saudi Arabia, indicating a low level of operational performance. Additionally, a correlation was observed between the use of smart algorithms and operational performance, suggesting that the level of operational performance can be predicted based on the utilization of smart algorithms. The study concludes that the implementation of intelligent algorithms can enhance the operational performance of sports facilities in the Kingdom of Saudi Arabia. It provides valuable insights into the effects of utilizing smart algorithms on improving operational performance.
This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Copyright © by EnPress Publisher. All rights reserved.