This study explores the advancement of ethical practices and environmental sustainability in Thai banking through an in-depth case analysis of Siam Commercial Bank (SCB), the country’s first indigenous bank founded in 1907. SCB has significantly influenced ethical banking practices and sustainability initiatives. The research provides a unique comparative analysis of SCB’s ethical frameworks and sustainability policies, assessing their impact on key stakeholders, including customers, employees, the community, and the environment. Employing a qualitative case study methodology, this study utilizes secondary data from SCB’s reports and CSR documents, analyzed through thematic analysis and descriptive statistics. The findings reveal SCB’s substantial progress in aligning ethical considerations with environmental sustainability, contributing new insights into ethical decision-making processes and the balance between profit and responsibility. Recommendations are provided to enhance ethical and sustainable practices in banking, adding to the discourse on corporate responsibility, environmental stewardship, and sustainable development.
Purpose: The major objective of this study is to measure the impact of various attributes, such as social attraction, physical attraction, and task attraction on para-social relationships. The study also seeks to measure how the para-social relationship mediates the association between the three attributes (above-mentioned) on perceived credibility and informational influence, and consumers’ intention to purchase banking products. Study design/methodology: PLS-SEM has been used as it is believed to be most suited for the study due to the multivariate non-normality in the data, and the small sample size. Data has been collected using the 5-point Likert scale from approximately 151 respondents, who were selected using the non-random sampling method based on purposive sampling coupled with convenience-based sampling. The data was collected from January 2023 to August 2023. Findings: Largely, the findings reveal that both social and physical attractions do have a positive impact on the para-social relationship, further leading to perceived credibility and informational influence. Notably, this perceived credibility and informational influence lead to consumers’ intentions to purchase banking products, albeit with the use of artificial intelligence-based chatbots and digital assistants. Originality: This is possibly among the first-ever studies extending the para-social theory for purchasing banking products and services using artificial intelligence-based chatbots and virtual assistants.
Decentralized cryptocurrencies, such as bitcoin, use peer-to-peer software protocol, disintermediating the traditional intermediaries that used to be banks and other financial intermediaries, effectuating cross-border transfer. In fact, by removing the requirement for a middleman, the technology has the potential to disrupt current financial transactions that rely on a trusted authority or intermediary operator. Traditional financial regulation, primarily based on the command-and-control approach, is ill-suited to regulating decentralized cryptocurrencies. The present paper aims to investigate the policy option most suitable for regulating decentralized cryptocurrencies. The study employs content analysis method to effectuate the purpose of the study. The paper argues that the combination of both direct and indirect regulatory approaches would be a feasible option for regulating decentralized cryptocurrencies. The absence of centralized authority and the borderless nature of decentralized cryptocurrencies would make them antithetical to centralized direct regulation. Therefore, the findings of the study suggest that regulators should focus on regulating intermediaries bridging the connection between the online world (crypto ecosystem) and the physical world (the point of converting crypto into fiat money). These intermediaries can work as passive actors or surrogate regulators who are indirectly responsible for implementing policy options on behalf of the central authority.
This article aims to measure and identify the factors influencing the decision to use Chatbot in e-banking services for GenZ customers in Vietnam through 292 customers. Testing methods: Cronbach’s Alpha trust factor, EFA discovery factor analysis, and regression analysis have shown that 07 factors directly affect GenZ’s decision to use Chatbot. Those factors include (1) Customer attitude; (2) Useful perception; (3) Perception of ease of use; (4) Behavioral control perception; (5) Risk perception; (6) Subjective norms and (7) Trust. On that basis, the article has set out management implications for Vietnamese commercial banks to approach and increase the decision of customers aged 18–24 years in Vietnam.
While extensive research has explored interconnectedness, volatility spillovers, and risk transmission across financial systems, the comparative dynamics between Islamic and conventional banks during crises, particularly in specific regions such as Saudi Arabia, are underexplored. This study investigates risk transmissions and contagion among banks operating in Islamic and conventional modes in the Kingdom of Saudi Arabia. Daily banking stock data spanning November 2018 to November 2023, encompassing two major crises—COVID-19 and the Russian-Ukraine war—were analyzed. Using the frequency TVP-VAR approach, the study reveals that average total connectedness for both banking groups exceeds 50%, with short-run risk transmission dominating over long-term effects. Graphical visualizations highlight time-varying connectedness, driven predominantly by short-run spillovers, with similar patterns observed in both Islamic and conventional banking networks. The main contribution of this paper is the insight that long-term investment strategies are crucial for mitigating potential risks in the Saudi banking system, given its limited diversification opportunities.
Purpose: The purpose of this paper is to explore the impact of Artificial Intelligence on the performance of Indian Banks in terms of financial metrics. The study focused specifically on the NIFTY Bank Index. The paper also advocates that a greater transparency in disclosing AI related information in a Bank’s annual report is required even if it is voluntary. Design/Methodology/Approach: The paper uses a mixed method approach where quantitative and qualitative analysis is combined. A dynamic panel data model is used to understand the impact of AI of Return on Equity (RoE) of 12 Indian Banks in the NIFTY Bank Index over a five-year period. In addition to that, Content analysis of annual reports of banks was conducted to examine AI related disclosure and transparency. Findings: The paper highlights that the integration of Artificial Intelligence (AI) significantly influences the financial performance of sample banks of India. Return on Equity the specific parameter positively influenced with adoption of AI. The profitability of banks is positively impacted by reduced errors and improved operational efficiency. The content analysis of annual reports of the banks indicates different approach for AI disclosure where some banks give detailed information and some are not transparent about AI initiatives. The findings suggest that a higher level of transparency could enhance confidence of all stakeholders. Theoretical Implications: The positive relation between adoption of AI and financial performance, specifically ROE, gives a foundation for academic research to explore the dynamics of emerging technology and financial systems. The study can be extended to explore the impact on other performance indicators in different sectors. Practical Implications: The findings of this study emphasize the importance of transparent AI related disclosures. A detailed reporting about integration of AI helps in enhanced stakeholders’ confidence in case of banking industry. The regulatory framework of banks may also consider making mandatory AI disclosure practices to ensure due accountability to maximize the benefits of AI in banking.
Copyright © by EnPress Publisher. All rights reserved.