Accurate drug-drug interaction (DDI) prediction is essential to prevent adverse effects, especially with the increased use of multiple medications during the COVID-19 pandemic. Traditional machine learning methods often miss the complex relationships necessary for effective DDI prediction. This study introduces a deep learning-based classification framework to assess adverse effects from interactions between Fluvoxamine and Curcumin. Our model integrates a wide range of drug-related data (e.g., molecular structures, targets, side effects) and synthesizes them into high-level features through a specialized deep neural network (DNN). This approach significantly outperforms traditional classifiers in accuracy, precision, recall, and F1-score. Additionally, our framework enables real-time DDI monitoring, which is particularly valuable in COVID-19 patient care. The model’s success in accurately predicting adverse effects demonstrates the potential of deep learning to enhance drug safety and support personalized medicine, paving the way for safer, data-driven treatment strategies.
This study aimed to determine the socio-economic poverty status of those living in rural areas using data surveys obtained from household expenditure and income. Machine learning-based classification and clustering models were proven to provide an overview of efforts to determine similarities in poverty characteristics. Efforts to address poverty classification and clustering typically involve comprehensive strategies that aim to improve socio-economic conditions in the affected areas. This research focuses on the combined application of machine learning classification and clustering techniques to analyze poverty. It aims to investigate whether the integration of classification and clustering algorithms can enhance the accuracy of poverty analysis by identifying distinct poverty classes or clusters based on multidimensional indicators. The results showed the superiority of machine learning in mapping poverty in rural areas; therefore, it can be adopted in the private sector and government domains. It is important to have access to relevant and reliable data to apply these machine learning techniques effectively. Data sources may include household surveys, census data, administrative records, satellite imagery, and other socioeconomic indicators. Machine learning classification and clustering analyses are used as a decision support tool to gain an understanding of poverty data from each village. These strategies are also used to describe the profile of poverty clusters in the community in terms of significant socio-economic indicators present in the data. Village clusters based on an analysis of existing poverty indicators are grouped into high, moderate, and low poverty levels. Machine learning can be a valuable tool for analyzing and understanding poverty by classifying individuals or households into different poverty categories and identifying patterns and clusters of poverty. These insights can inform targeted interventions, policy decisions, and resource allocation for poverty reduction programs.
Objective: As the scale and importance of official development assistance (ODA) continue to grow, the need to enhance the effectiveness of ODA policies has become more critical than ever before. In this context, it is essential to systematically classify recipient countries and establish tailored ODA policies based on these classifications. The objective of this study is to identify an appropriate methodology for categorizing developing countries using specific criteria, and to apply it to actual data, providing valuable insights for donor countries in formulating future ODA policies. Design/Methodology/Approach: The data used in this study are the basic statistics on the Sustainable Development Goals (SDGs) published annually in the SDGs Report. The analytical method employed is decision tree analysis. Results: The results indicate that the 167 countries analyzed were classified into 10 distinct nodes. The study further limited the scope to the five nodes representing the most disadvantaged developing countries and suggested future directions for aid policies for each of these nodes.
This research paper aims to benchmark the characteristics of financial systems for 102 countries worldwide from the period of 2005 to 2017. The financial systems’ database encompasses four main dimensions, each consisting of several variables for every indicator: (a) financial depth, (b) financial efficiency, (c) financial access, and (d) financial stability. The objective is to closely analyse the different factors that contribute to the attractiveness of financial and economic systems globally. Furthermore, this paper employs a literature review and an empirical modelling and classification of financial systems worldwide to assess their attractiveness. The modelling process utilizes two statistical analysis methods: discriminant analysis (PCA) and neural analysis. By doing so, this research paper aims to identify the most appropriate measures to strengthen these systems and economies. The main conclusion of the research is to establish a ranking of the world’s best countries and also the validation of the hypothesis that macroeconomic conditions are the effective determinants of the classification dimensions of financial systems.
Copyright © by EnPress Publisher. All rights reserved.