This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Recently, there has been a burgeoning fascination with the influence of urban green spaces (UGS) on physical activity (PA) and health. This interest has been accompanied by a mounting body of evidence that establishes a connection between UGS and residents’ PA levels. Numerous studies have been conducted to investigate the significance of UGS and have generally agreed on their connection with health. However, there is still considerable variation in viewpoints regarding the intermediate factors contributing to this association. The primary objective of this study was to investigate the potential correlation between different qualitative factors of UGS and PA. The study involved the collection of data from four parks located in Edinburgh. Four trained observers utilised the Environmental Assessment of Public Recreational Spaces (EARPS Mini) tool to code various environmental characteristics. Additionally, the Method for Observing Physical Activity and Wellbeing (MOHAWk) observation tool was employed to code instances of on-site incivility and the characteristics and behaviours of residents engaging in UGS activities. The results of this study show that the facilities and environment, area and socioeconomic status (SES) of UGS positively affect the type of PA and the level of PA, as well as influence residents’ attentiveness to the environment and their interactions with each other. Demographics such as gender and age group are also significantly related to the level and type of PA. Significant differences in the level and type of PA, and race only differed significantly in the choice of activity type. These results suggest that the quality of the UGS environment affects the level, type, and status of PA among residents and that resident characteristics also have an impact. Future research suggests increasing data collection related to PA frequency and PA duration and considering longitudinal observations over time for refinement.
Graphene, an innovative nanocarbon, has been discovered as a significant technological material. Increasing utilization of graphene has moved research towards the development of sustainable green techniques to synthesize graphene and related nanomaterials. This review article is basically designed to highlight the significant sustainability aspects of graphene. Consequently, the sustainability vision is presented for graphene and graphene nanocomposites. Environmentally sustainable production of graphene and ensuing nanomaterials has been studied. The formation of graphene, graphene oxide, reduced graphene oxide, and other derivatives has been synthesized using ecological carbon and green sources, green solvents, non-toxic reagents, and green routes. Furthermore, the utilization of graphene for the conversion of industrial polymers to sustainable recycled polymers has been studied. In addition, the recycled polymers have also been used to form graphene as a sustainable method. The implication of graphene in the sustainable energy systems has been investigated. Specifically, high specific capacitance and capacitance retention were observed for graphene-based supercapacitor systems. Subsequently, graphene may act as a multi-functional, high performance, green nanomaterial with low weight, low price, and environmental friendliness for sustainable engineering and green energy storage applications. However, existing challenges regarding advanced material design, processing, recyclability, and commercial scale production need to be overcome to unveil the true sustainability aspects of graphene in the environmental and energy sectors.
In engineering, a design is best described based on its alternative performance operation. In this paper, an electric power plant is analysed based on its effective operational performance even during critical situation or crisis. Data is generated and analysed using both quantitative and qualitative research approach. During maintenance operation of an electric power plant, some components are susceptible to wide range of issues or crises. These includes natural disasters, supply chain disruptions, cyberattacks, and economic downturns. These crises significantly impact power plant operations and its maintenance strategies. Also, the reliable operation of power plants is often challenged by various technical, operational, and environmental issues. In this research, an investigation is conducted on the problems associated with electric power plants by proposing a comprehensive and novel framework to maintenance the power plant during crises. Based on the achieved results discussed, the framework impact and contribution are the integration of proactive maintenance planning, resilient maintenance strategies, advanced technologies, and adaptive measures to ensure the reliability and resilience of electric power plant during power generation operations in the face of unforeseen challenges/crisis. Hypothetical inferences are used ranging from mechanical failures to environmental constraints. The research also presents a structured approach to ensure continuous operation and effective maintenance in the electric power plant, particularly during crisis (such as environmental issues and COVID-19 pandemic issues).
Copyright © by EnPress Publisher. All rights reserved.