The mining industry significantly impacts the three pillars of sustainable development: the economy, the environment, and society. Therefore, it is essential to incorporate sustainability principles into operational practices. Organizations can accomplish this through knowledge management activities and diverse knowledge resources. A study of 300 employees from two of the largest mining corporations in South Kalimantan, Indonesia, found that four out of five elements of knowledge management—green knowledge acquisition, green knowledge storage, green knowledge application, and green knowledge creation—have a direct impact on the sustainability of businesses. The calculation was determined using Structural Equation Modelling (SEM). However, the study also found that the influence of collectivist cultural norms inhibits the direct effect of green knowledge sharing on corporate sustainable development. The finding suggests that companies operating in collectivist cultures may need to take additional measures to encourage knowledge sharing, such as rewarding employees for sharing their expertise on green initiatives, supportive organizational culture, clear expectations, and opportunities for social interaction.
E-learning has become an integral part of higher education, significantly influencing the teaching and learning landscape. This study investigates the impact of student characteristics such as gender, grade, and major on E-learning satisfaction. Utilizing Structural Equation Modeling (SEM) and collecting data through 527 valid questionnaires from Nanjing Normal University students, this research reveals the nuanced relationships between these variables and E-learning satisfaction. The findings indicate that gender, grade, and major significantly and positively impact student satisfaction with E-learning, highlighting the need for tailored E-learning resources to meet diverse student needs. The study underscores the importance of continuous improvement in E-learning resources and platforms to enhance student satisfaction. This research contributes to the understanding of effective E-learning strategies in higher education institutions.
Increasing number of smart cities, the rise of technology and urban population engagement in urban management, and the scarcity of open data for evaluating sustainable urban development determines the necessity of developing new sustainability assessment approaches. This study uses passive crowdsourcing together with the adapted SULPiTER (Sustainable Urban Logistics Planning to Enhance Regional freight transport) methodology to assess the sustainable development of smart cities. The proposed methodology considers economic, environmental, social, transport, communication factors and residents’ satisfaction with the urban environment. The SULPiTER relies on experts in selection of relevant factors and determining their contribution to the value of a sustainability indicator. We propose an alternative approach based on automated data gathering and processing. To implement it, we build an information service around a formal knowledge base that accumulates alternative workflows for estimation of indicators and allows for automatic comparison of alternatives and aggregation of their results. A system architecture was proposed and implemented with the Astana Opinion Mining service as its part that can be adjusted to collect opinions in various impact areas. The findings hold value for early identification of problems, and increasing planning and policies efficiency in sustainable urban development.
Purpose: This study investigates the mediating effect of Environmental Attachment (EA) among consumers in an emerging market, concentrating on the impact of two key factors: Green Environmental Awareness (GEA) and Sense of Responsibility (SOR) on Sustainable Product Consumption (SPC). Design/methodology/approach: A thorough online survey was carried out with Google Docs and distributed to 304 Pakistani consumers who now use or are considering purchasing sustainable or green products. Structural Equation Modeling (SEM) was used to rigorously test the suggested model utilizing a non-probability sampling technique, specifically the stratified purposive sampling approach. Findings: Green environmental awareness (GEA) and a sense of responsibility (SOR) have been shown to have a substantial impact on creating environmental attachment (EA) in both existing and potential customers of sustainable products. The findings of this study also revealed that environmental attachment (EA) plays an important role as a mediator in the links between green environmental awareness (GEA) and the consumption of sustainable goods (SPC), as well as between a sense of responsibility (SOR) and SPC. Despite this, it is crucial to note that the projected direct effect of GEA on SPC was shown to be statistically insignificant. This conclusion implies that additional factors outside the scope of this study may influence the relationship between GEA and SPC. Research limitations/implications: It is vital to highlight that the focus of this study is on an online sample of consumers near Punjab, Pakistan. Future studies should look at other parts of Pakistan to acquire a more complete picture of sustainable consumption trends. Furthermore, our findings suggest that characteristics impacting sustainable consumption, such as Green Environmental Awareness (GEA) and Sense of Responsibility (SOR), may differ among countries. As a result, performing a comparison analysis involving two or more countries could provide valuable insights into projecting sustainable product consumption among current and potential sustainable product customers. Originality/Value: This study contributes to the literature by investigating the factors of sustainable consumption using the lens of the Norm Activation Model theory (NAM), notably Green Environmental Awareness (GEA) and Sense of Responsibility (SOR), to predict sustainable product consumption. The findings are important for promoting long-term goals in Pakistan and provide a framework that can be applied in other emerging markets.
Consumer satisfaction can be defined as the user’s response to a service or experience compared to the user’s expectations and perceived practical benefits. After reviewing consumer satisfaction models, it can be argued that there is no single model of consumer satisfaction assessment that is suitable for every service and every region of the world, as the causes and outcomes of satisfaction often vary. The research is original in its methodology: at the beginning, a theoretical research model is presented, then hypotheses are formulated, and correlation, factorial, regression analyses were made, which results confirmed hypotheses. The crop insurance system consists of relations between the state institution regulates insurance activities, farmers, insurers and insurance intermediaries. The aim of this article is to identify the factors that determine consumer satisfaction with crop insurance and to assess their impact. The empirical study found that consumer satisfaction is determined by the factors of recognizable value, functional (process) and technical (result) quality, consumer expectations, and image. The most important factors that determine consumer satisfaction of crop insurance are recognizable value, functional quality, and consumer expectations. Consumer satisfaction can be assessed by the cost paid and the quality received, the quality expected, and the consumers’ evaluation of the services. It was found that the socio-demographic elements of consumers do not have a decisive influence on the factors that determine service satisfaction and consumer satisfaction. It is also established that socio-demographic elements of consumers (farmer experience and insurance experience) have direct statistically significant but weak links with consumer satisfaction.
The study evaluates to what extent logistics performance and its components impact Vietnam’s bilateral export value. The augmented Gravity model is applied on panel data in the period from 2010 to 2018. Logistics efficiency is measured by Logistic performance index (LPI) and its sub-indices developed by the World Bank. A variety of diagnostic tests and estimation methods are employed to ensure the stability of the results. The main findings confirm that all explanatory variables demonstrate the expected signs, and aggregate logistics performance and its sub-indices have positive impacts on Vietnam’s export flows, with the magnitude of logistics impacts is greater than other factors in the research model. Among LPI components of Vietnam, Ease of arranging shipments index is the most influential factor on exports, followed by Infrastructure, Timeliness, and Quality of logistics services. These export’s effects are also identified by partners’ LPI indicators namely Quality of logistics services, Customs, Infrastructure, and Tracking and tracing.
Copyright © by EnPress Publisher. All rights reserved.