Oil spill clean-up is a long-standing challenge for researchers to prevent serious environmental pollution. A new kind of oil-absorbent based on silicon-containing polymers (e.g., poly(dimethylsiloxane) (PDMS)) with high absorption capacity and excellent reusability was prepared and used for oil-water separation. The PDMS-based oil absorbents have highly interconnected pores with swellable skeletons, combining the advantages of porous materials and gels. On the other hand, polymer/silica composites have been extensively studied as high-performance functional coatings since, as an organic/inorganic composite material, they are expected to combine polymer flexibility and ease of processing with mechanical properties. Polymer composites with increased impact resistance and tensile strength without decreasing the flexibility of the polymer matrix can be achieved by incorporating silica nanoparticles, nanosand, or sand particles into the polymeric matrices. Therefore, polymer/silica composites have attracted great interest in many industries. Some potential applications, including high-performance coatings, electronics and optical applications, membranes, sensors, materials for metal uptake, etc., were comprehensively reviewed. In the first part of the review, we will cover the recent progress of oil absorbents based on silicon-containing polymers (PDMS). In the later details of the review, we will discuss the recent developments of functional materials based on polymer/silica composites, sand, and nanosand systems.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
In the past three decades, nanotechnology has attracted extensive attention. People have many expectations on the utilization of nanotechnology in medicine, but unfortunately, these expectations are unlikely to be realized. In the field of nanotechnology, the niche for building commercial products has not been developed yet. However, metal nanoparticles have attracted people’s attention since ancient times because of their optical properties, which are very different from those of bulk metals. By understanding the origin of these optical properties and using current technology, these nanoparticles can be manipulated to build a palette. Using micro measurement equipment, the palette can be printed with very good resolution.
The porous carbon/Ni nanoparticle composite was prepared by a freeze-drying method using NaCl as the template. It was applied in the effect of the concentration, adsorption time, and temperature of adsorption on the adsorption behavior. The kinetic model and the adsorption isothermic fitting results show that the adsorption behavior fits with the pseudo-secondary dynamics and the Langmuir isothermal model, indicating that the adsorption process is monolayer adsorption. Thermodynamic results indicate that the adsorption process is spontaneous physicochemical adsorption. The fitting showed that the porous carbon/Ni nanoparticle composites reach 217.17 mg·g-1, at 313 K indicates good adsorption for Congo red.
New hybrid magnetic materials based on HDPE filled with Со and Ni nanoparticles have been prepared via the metal vapor synthesis. Properties of the metal-polymer composites have been elucidated as a function of MVS parameters and metal nature. The Faraday method has been applied to characterize the magnetic properties of the systems. The microstructure of the samples has been studied with a number of X-ray and synchrotron techniques, including XRD, EXAFS and SAXS. Core-level and valence band spectra were measured by XPS. The peak at binding energy of 282.8 eV characteristic of C-Ni bond was recorded in the C 1s spectrum. It was shown that properties of nanocomposite materials with similar compositions are determined both by the synthesis conditions and post-synthesis factors.
Application of nanoparticles have been proven to aid heat transfer in engineering systems. This work experimentally investigated the performance of a domestic refrigerator under the influence of Al2O3 nanoparticles dispersed in mineral oil based lubricant at different charges (40, 60 and 80 g) of LPG refrigerant. The performance of the system was then investigated using test parameters including: power consumption, evaporator air temperature (pull-down time), to attain the specified International Standard Organisation (ISO) requirement for standard evaporator air temperature with small refrigerator size. Results showed improved pull down time and steady state evaporator air temperatures for the nano-lubricant based LPG. Improvement of about 11.79% in coefficient of performance (COP) was obtained with Al2O3-lubricant based LPG at 40g charge on the refrigerator system, while reduction of about 2.08% and 4.41% in COP were observed at 60 and 80 g charge of LPG based on Al2O3-lubricant respectively. Furthermore, reduction of about 13.4% and 19.53% in the power consumption of the system were observed at 40 and 60g charges of Al2O3-lubricant based LPG, whereas at 80 g, an increase of about 1.28% was recorded. Using Al2O3-LPG nano-refrigerant in domestic refrigerators is economical and also a better alternative to pure LPG.
Copyright © by EnPress Publisher. All rights reserved.