Investment growth in many emerging market and developing economies (EMDEs) has slowed sharply since 2010. Investment growth performance has varied significantly across different regions, however. This paper examines the evolution of investment growth in six EMDE regions, documents remaining investment needs, especially for infrastructure, and presents a set of region-specific policy responses to address these needs. It reports three main findings. First, investment growth has been particularly weak in EMDE regions hosting a large number of commodity exporters. In regions with a substantial number of commodity-importing economies, investment growth has been somewhat resilient but has also declined steadily since 2010. Second, sizable investment needs remain in most EMDE regions to make room for expanding economic activity and rapid urbanization. A large portion of these investment needs is in infrastructure and human capital. Finally, while specific policy priorities vary across regions, several policy options to address remaining investment needs apply universally. These include more, and more efficient, public investment and measures to improve overall growth prospects and the business climate. Improved project selection and monitoring, as well as better governance, may enhance the efficiency and benefits from public investment.
Intra-regional trade serves as a key growth engine for East Asian economies. Accompanying the rapid growth of bilateral and intra-regional trade ties, the East Asian economies are becoming increasingly connected and interdependent. Infrastructure connectivity plays a crucial role in bridging different areas of the East Asian region and enabling them to reap the full socioeconomic benefits of economic cooperation and integration. Nevertheless, further improvement of infrastructure in the region faces major challenges due to the lack of effective mechanisms for coordination and dialogue on regional integration through funding infrastructure projects, as well as the serious trust deficit among member states that has arisen from the on-going territorial and historical disputes.
The hydroclimatological monitoring network in Haiti was inadequate before 2010 due to a lack of meteorological stations and inconsistent data recording. In the aftermath of the January 2010 earthquake, the monitoring network was reconstructed. In light of the prevailing circumstances and the mounting necessity for hydroclimatological data for water resource management at the national level, it is of paramount importance to leverage and optimize the limited available data to the greatest extent possible. The objective of this research is to develop regional equations that facilitate the transfer of climatic data from climatological stations to locations with limited or absent data. Physiographic and climatological characteristics are used to construct the hydrologic information transfer equations for sites with limited or no data. The validity of the regionalization techniques was assessed using cross-validation. The results enable estimation of hydrological events through the specific patterns of behavior of each region of the country, identified in cartography of homogeneous zones.
Proper understanding of LULC changes is considered an indispensable element for modeling. It is also central for planning and management activities as well as understanding the earth as a system. This study examined LULC changes in the region of the proposed Pwalugu hydropower project using remote sensing (RS) and geographic information systems (GIS) techniques. Data from the United States Geological Survey's Landsat satellite, specifically the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Operational Land Imager (OLI), were used. The Landsat 5 thematic mapper (TM) sensor data was processed for the year 1990; the Landsat 7 SLC data was processed for the year 2000; and the 2020 data was collected from Operation Land Image (OLI). Landsat images were extracted based on the years 1990, 2000, and 2020, which were used to develop three land cover maps. The region of the proposed Pwalugu hydropower project was divided into the following five primary LULC classes: settlements and barren lands; croplands; water bodies; grassland; and other areas. Within the three periods (1990–2000, 2000–2020, and 1990–2020), grassland has increased from 9%, 20%, and 40%, respectively. On the other hand, the change in the remaining four (4) classes varied. The findings suggest that population growth, changes in climate, and deforestation during this thirty-year period have been responsible for the variations in the LULC classes. The variations in the LULC changes could have a significant influence on the hydrological processes in the form of evapotranspiration, interception, and infiltration. This study will therefore assist in establishing patterns and will enable Ghana's resource managers to forecast realistic change scenarios that would be helpful for the management of the proposed Pwalugu hydropower project.
Financial shocks have an incredible socioeconomic effect on both developed and developing countries. Various recent studies demonstrated that bad public governance impacted public health across all nations. In fact, this study aims to use panel data for 21 countries from the Middle East and North Africa (MENA) region over the period 2000–2020 to scrutinize the effect of both governance and financial crises on public health. We use the generalized method of moments (GMM) approach to carry out the empirical analysis. The objective of using this method is to deal with the issue of endogeneity between exogen variables. Results outline that there is a significant positive association between public governance indicators and public health. Moreover, we found a strong negative association between financial shocks and public health. Thus, the direct negative impact of financial crisis on public health could be mitigated by the indirect positive impacts via institutions and good public governance. This study gives insights to policymakers to take appropriate measures to decrease the severity of the financial shocks and improve healthcare services.
Heat conduction theory stipulates that two thermo-physical properties of materials: the thermal conductivity “k” and the thermal diffusivity “α” influence the temperature evolution in regular and irregular bodies as a response to various cooling/heating conditions. The traditional statement involving the two thermo-physical properties is examined at length in the present study for the case of a semi-infinite region. The primary objective of the present study is to investigate the influence of the less known thermo-physical property called the thermal effusivity “e” on the incipient surface temperature rise in a semi-infinite body affected by uniform surface heat flux. The secondary objective of the study is to identify a key figure of merit named the dimensionless threshold time that separates the incipient temperature elevation in a semi-infinite region from the incipient temperature elevation in a large wall of finite thickness under the same uniform surface heat flux. The outcome of the methodical analysis suggests that the accurate estimate for the dimensionless threshold time τth in the semi-infinite region should be 0.10.
Copyright © by EnPress Publisher. All rights reserved.