The gravure printing process is widely utilized for large-scale, high-quality, multi-colored printing tasks executed at high press speeds. This includes a diverse range of products such as art books, greeting cards, currency, stamps, wallpaper, magazines, and more. This thesis addresses the fire risks associated with gravure printing, acknowledging the use of highly flammable materials and the potential for static charge-related incidents. Despite its prevalence, there is limited research on fire prevention and control in gravure printing. The study employs field observations, stakeholder interviews, and an extensive review of literature on fire risk and control in printing press operations in India. It analyzes the causes of fires using the fire triangle model, emphasizing the role of heat, combustible materials, and oxygen in fire incidents within the printing press environment. The thesis categorizes preventive measures into fire prevention and fire suppression actions, focusing on reducing fire load, static charge mitigation, and implementing firefighting systems. It observes that poor housekeeping, lack of awareness, and inadequate emergency control plans contribute significantly to fire hazards in press facilities. Additionally, the research identifies key factors such as high press temperatures, low humidity, improper storage, and inadequacies in firefighting systems as potential causes of fires. It emphasizes the need for optimal environmental conditions, proper storage practices, and effective firefighting infrastructure within press facilities. The study concludes with comprehensive guidelines for loss prevention and control, including management programs, housekeeping, operator training, pre-emergency planning, preventive maintenance, and plant security. It also addresses safety measures specific to gravure printing presses, such as automatic sprinkler systems, fire hydrant system, carbon dioxide flooding systems, and portable fire extinguishers. In summary, this thesis provides valuable insights into the multifaceted nature of fire risks in gravure printing presses and recommends a holistic approach for effective fire prevention and control.
Embassies are important buildings, involving the diplomatic image of a country’s government in another foreign country. Given the rising tensions between countries, either political, economic, religion or war, attacks on embassies have been increasing in recent years. Thus, it is evident that appropriate measures are to be taken to reduce the potential impact of an attack. The paper discusses the measures in enhancing building security of embassies. The principles for Security Planning and Design are discussed, followed by an introduction to a systematic security risk assessment framework. The framework is evaluated regarding the potential security risk posed by an attack against elements of the mega infrastructure using explosives. Further options to increase the security of embassies are also explored to reduce the risk of a potential attack. A security-enhanced building, planned and constructed well to specifications, can provide benefits to the client, including greater cost advantage and increase of value for the structure.
Using a Global Trade Analysis Project (GTAP) model, and China as the base for analytical comparison, this paper shows that there are significant economic benefits to China and the participating countries along all six Belt and Road Initiative (BRI) economic corridors. However, to maximize these benefits, the social and environmental risks need to be well managed. The analysis shows a clear sequencing in terms of priority corridors. Two corridors have minimal investments and immediate returns, two corridors have significant investments with huge returns, and two corridors have high investments with lower returns. Overall, the paper demonstrates that to ensure the sustainability of any BRI corridor development, there is a need to consider its costs and benefits from the economic, social and environmental perspectives.
Flood risk analysis is the instrument by which floodplain and stormwater utility managers create strategic adaptation plans to reduce the likelihood of flood damages in their communities, but there is a need to develop a screening tool to analyze watersheds and identify areas that should be targeted and prioritized for mitigation measures. The authors developed a screening tool that combines readily available data on topography, groundwater, surface water, tidal information for coastal communities, soils, land use, and precipitation data. Using the outputs of the screening tool for various design storms, a means to identify and prioritize improvements to be funded with scarce capital funds was developed, which combines the likelihood of flooding from the screening tool with a consequence of flooding assessment based on land use and parcel size. This framework appears to be viable across cities that may be inundated with water due to sea-level rise, rainfall, runoff upstream, and other natural events. The framework was applied to two communities using the 1-day 100-year storm event: one in southeast Broward County with an existing capital plan and one inland community with no capital plan.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
Copyright © by EnPress Publisher. All rights reserved.