Considering the application of the polymer electrolyte membrane fuel cell (PEMFC), the separator thickness plays a significant role in determining the weight, volume, and costs of the PEMFC. In addition, thermal management, i.e., temperature distribution is also important for the PEMFC system to obtain higher performance. However, there were few reports investigating the relation between the temperature profile and the power generation characteristics e.g., the current density distribution of PEMFC operated at higher temperatures (HT-PEMFC). This paper aims to study the impact of separator thickness on the temperature profile and the current density profile of HT-PEMFC. The impact of separator thickness on the gases i.e., H2, O2 profile of HT-PEMFC numerically was also studied using CFD software COMSOL Multiphysics in the paper. In the study, the operating temperature and the relative humidity (RH) of the supply gas were varied with the separator thickness of 2.0 mm, 1.5 mm, and 1.0 mm, respectively. The study revealed that the optimum thickness was 2.0 mm to realize higher power generation of HT-PEMFC. The heat capacity of the separator thickness of 2.0 mm was the biggest among the separators investigated in this study, resulting in the dry-up of PEM and catalyst layer was lower compared to the thinner separator thickness. It also clarified the effects of separator thickness of profile gases, e.g., O2, H2O, and current density profile became larger under the higher temperature and the lower RH conditions.
Low temperature is one of the most significant environmental factors that threaten the survival of subtropical and tropical plant species. By conducting a study, which was arranged in a completely randomized design with three replicates, the relative freezing tolerance (FT) of four Iranian pomegranate cultivars, including ‘Alak Torsh’, ‘Tabestaneh Torsh’, ‘Poost Sefid’, and ‘Poost Syah’, as well as its correlation with some biochemical indices, were investigated. From each cultivar, pieces of one-year-old shoot samples were treated with controlled freezing temperatures (−11, −14, and −17 ℃) to determine lethal temperatures (LT50) based on survival percentage, electrolyte leakage, phenolic leakage, and tetrazolium staining test (TST) methods. Results showed that FT was higher in the second year with a lower minimum temperature and a higher concentration of cryoprotectants. The stronger correlation of electrolyte leakage with survival percentage (r = 0.93***) compared to the other three indices explained that this index could be the most reliable injury index in determining the pomegranate FT to investigate freezing effects. Of all four cultivars, ‘Poost Syah’ was the hardest by presenting a higher FT than ~ −14 ℃ in mid-winter. Accordingly, this pomegranate cultivar seems to be promising to grow in regions with a higher risk of freezing and to be involved in breeding programs to develop novel commercial cultivars.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
The objective of this study is to explore the relationship between changing weather conditions and tourism demand in Thailand across five selected provinces: Chonburi (Pattaya), Surat Thani, Phuket, Chiang Mai, and Bangkok. The annual data used in this study from 2012 to 2022. The estimation method is threshold regression (TR). The results indicate that weather conditions proxied by the Temperature Humidity Index (THI) significantly affect tourism demand in these five provinces. Specifically, changes in weather conditions, such as an increase in temperature, generally result in a decrease in tourism demand. However, the impact of weather conditions varies according to each province’s unique characteristics or highlights. For example, tourism demand in Bangkok is not significantly affected by weather conditions. In contrast, provinces that rely heavily on maritime tourism, such as Chonburi (Pattaya), Phuket, and Surat Thani, are notably affected by weather conditions. When the THI in each province rises beyond a certain threshold, the demand for tourism in these provinces by foreign tourists decreases significantly. Furthermore, economic factors, particularly tourists’ income, significantly impact tourism demand. An increase in the income of foreign tourists is associated with a decrease in tourism in Pattaya. This trend possibly occurs because higher-income tourists tend to upgrade their travel destinations from Pattaya to more upscale locations such as Phuket or Surat Thani. For Thai tourists, an increase in income leads to a decrease in domestic tourism, as higher incomes enable more frequent international travel, thereby reducing tourism in the five provinces. Additionally, the study found that the availability and convenience of accommodation and food services are critical factors influencing tourism demand in all the provinces studied.
Copyright © by EnPress Publisher. All rights reserved.