The linkages between adequate service delivery and sustainable development have been given a little academic attention in the South Africa’s local municipalities. For this reason, the achievement of sustainable development has been difficult which has culminated in the occurrence of service delivery protests. These service delivery protests have posed critical threats to social security thus affecting the possibility to achieve sustainable development in South Africa. the paper findings showed that the delivery of inadequate services to the citizens is triggered by the failure to equally include citizens in the process. One of the threats that the paper found is the fact that these service delivery protests have become a major issue and any move to solve them without citizen participation has been unsuccessful. The paper findings also showed that that the lack of adequate service delivery to the citizens causes human insecurities which in turn affect the achievement of sustainable development. This is because the occurrence of the service delivery protests deteriorates national economic growth and human growth. They affect foreign investors and international tourists by instilling fear in them and yet they are contributors to sustainable economic growth that leads to sustainable development. The findings of this paper also presented that the use of Artificial Intelligence (AI) technologies can increase citizen participation during service delivery. It is through the use of citizen participation that openness, transparency, accountability, and representation principles that promote the delivery of adequate services are possible. The paper found that using AI technologies would also foster trust between the service provider and service receiver needed for delivering adequate services, thus achieve sustainable development in South Africa.
The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
The aim of our study is to provide information on how and to what extent professionals of art institutions in Hungary and Slovakia (contemporary galleries and museums) use artificial intelligence in their work processes. Our research focuses on the extent to which these institutions use artificial intelligence in the development of the institution’s operational strategy, or how they can embed the assumed usefulness of artificial intelligence in the operation of the institution, be it the creation of an exhibition, the textual processing of the professional life of an artist, or a about a tool that shapes the gallery’s marketing strategy. We conducted ten in-depth interviews in the two countries, the interviewees were selected using the snowball method. The interview took place among professionals and professionally credible artists who are actively active in contemporary fine art life. The results revealed that the use of artificial intelligence as a tool in the creative work processes is not a requirement in the field of culture, neither in Hungary nor in Slovakia. All the interviewees already had professional experience with AI, 90% of those interviewed would like to deepen their knowledge of the creative use methods of AI, e.g., by creating working groups in the workplace on an experimental basis. Based on our conclusions, we can say that artificial intelligence currently has no conscious strategic use in contemporary art institutions. It can be said that creative professionals are aware of the possibilities of using artificial intelligence in their own field of image, video, and text creation, but there is uncertainty on the part of creators and curators when it comes to copyright. The in-depth interviews provided source material for the compilation of a standardized set of questions for a larger survey of 300-500 people, proportional to the sample, so our presented results are partial results of a larger research.
This study conducts a systematic literature review to analyze the integration of artificial intelligence (AI) within business excellence frameworks. An analysis of the findings in the reviewed articles yielded five major themes: AI technologies and intelligent systems; impact of AI on business operations, strategies, and models; AI-driven decision-making in infrastructure and policy contexts; new forms of innovation and competitiveness; and the impact of AI on organizational performance and value creation in infrastructure projects. The findings provide a comprehensive understanding of how AI can be integrated into organizational excellence emerged frameworks to address challenges in infrastructure governance, and sustainable development. Key questions addressed include: how AI affects consumer behavior and marketing strategies. What AI’s capabilities for businesses, especially marketing and digital strategies? How can organizations address the drivers and barriers to help make better use of AI in these business operations? Should organizations even do anything with these insights? These questions and more will be tackled throughout this discussion. This paper attempts to derive a comprehensive conceptual framework from several fields of human resources, operational excellence, and digital transformation, that can help guide organizations and policymakers in embedding AI into infrastructure and development initiatives. This framework will help practitioners navigate the complexities of AI integration, ensuring profitability and sustainable growth in a highly competitive landscape. By bridging the gap between AI technologies and development-related policy initiatives, this research contributes to the advancement of infrastructure governance, public management, and sustainable development.
The financial services industry is experiencing a swift adoption of artificial intelligence (AI) and machine learning for a variety of applications. These technologies can be employed by both public and private sector entities to ensure adherence to regulatory requirements, monitor activities, evaluate data accuracy, and identify instances of fraudulent behavior. The utilization of artificial intelligence (AI) and machine learning (ML) has the potential to provide novel and unforeseen manifestations of interconnectivity within financial markets and institutions. This can be represented by the adoption of previously disparate data sources by diverse institutions. The researchers employed convenience sampling as the sampling method. The form was filled out over the period spanning from July 2023 to February 2024, and it was designed to be both anonymous and accessible through online and offline platforms. To assess the reliability and validity of the measurement scales and evaluate the structural model, we employed Partial Least Squares (PLS) for model validation. Specifically, we have used the software package Smart-PLS 3 with a bootstrapping of 5000 samples to estimate the significance of the parameters. The results indicate a positive and direct connection between artificial intelligence (AI) and either financial services or financial institutions. On the contrary, machine learning (ML) exhibits a strong and positive association among financial services and financial institutions. Similarly, there exists a positive and direct connection between AI and investors, as well as between ML and investors.
Copyright © by EnPress Publisher. All rights reserved.