In this study, the effect of roasting and boiling on the yield and oxidative stability of soya bean oil was investigated. The oil was soxhlet extracted and the oxidative stability was determined by the free fatty acid value, acid value and peroxide value. The results showed that the oil yield, free fatty acid value, acid value and peroxide value were significantly affected by roasting, boiling, and the thermal treatment time. The percentage oil yield in the control oil sample was 18.51%, which increased to 20.24% and 20.73% after boiling and roasting respectively, at 40mins. The corresponding free fatty acid and the peroxide value of the control oil sample were 0.14% and 2.04 meqO2/kg, which increased to 0.82% and 6.60 meqO2/kg by roasting, and 0.47% and 5.62 meqO2/kg by boiling respectively. Thus the oil yield, free fatty acid value, peroxide value, and acid value increased with increasing roasting and boiling time.
The results indicate that roasting provides a higher oil yield than boiling, but boiled oil has higher oxidative stability than roasted oil.
Demographic policy is one of the key tasks of almost any state at the present time. It correlates with the solution of pressing problems in the economic and social spheres, directly depends on the state of healthcare, education, migration policy and other factors and directly affects the socio-economic development of both individual regions and the country as a whole. Many Russian and foreign researchers believe that demographic indicators very accurately reflect the socio-economic and political situation of the state. The relevance of the study is due to the fact that for the progressive socio-economic development of any country, positive demographic dynamics are necessary. The main sign of the negative demographic situation that has developed in modern Russia and a number of countries, primarily European, is the growing scale of depopulation (population extinction). The purpose of this work was to analyze the existing demographic policy of Russia and compare demographic trends in Russia and other countries. The work uses methods of statistical data analysis, comparison of statistical indicators of fertility, mortality, natural population decline, migration, marriage rates in Russia and the Republic of Srpska, methods of retrospective analysis, research of the institutional environment created by the action of state and national programs “Demography”, “Providing accessible and comfortable housing and public services for citizens of the Russian Federation”, “Strategy of socio-economic development for the period until 2024”, Presidential decrees, etc. Research has shown that despite measures taken to overcome the demographic crisis, Russia’s population continues to decline. According to the Federal State Statistics Service of the Russian Federation (Rosstat), as of 1 January 2023, 146.45 million people lived in Russia. By 1 January 2046, according to a Rosstat forecast published in October 2023 the country’s population will decrease to 138.77 million people. To solve demographic problems in the Russian Federation, a national project “Demography” was developed and approved. The government has allocated more than 3 trillion rubles for its implementation. However, it is not possible to completely overcome the negative trend. The authors proposed a number of economic and ideological measures within the framework of agglomeration, migration, and family support policies that can be used within the framework of socio-economic development strategies and national programs aimed at overcoming the demographic crisis.
Despite noticeable research interest, the labor-intensive Readymade Garments (RMG) industry has rarely been studied from the perspective of workers’ productivity. Additionally, previous studies already generalized that rewards and organizational commitment lead to employee productivity. However, extant research focused on the RMG industry of Bangladesh, which consists of a different socio-cultural, economic, and political environment, as well as profusion dependency on unskilled labor with an abundance supply of it, hardly considered job satisfaction as a factor that may affect the dynamics of compensations or rewards, commitment, and employee productivity. To address this research gap, this study analyzes the spillover effect of compensation, organizational commitment, and job satisfaction on work productivity in Bangladesh’s readymade garments (RMG) industry. Besides, it delves into the analysis of job satisfaction as a mediator among these relationships. We examined the proposed model by analysing cross-sectional survey data from 475 respondents using the partial least squares-structural equation model in Smart PLS 4.0. The findings show that higher compensation and organizational commitment levels lead to higher levels of job satisfaction, leading to greater productivity. This research also discovered that job satisfaction is a mediator between compensation and productivity and commitment and productivity, respectively. Results further show that increased organizational commitment and competitive wages are the two keyways to boost job satisfaction and productivity in the RMG industry. Relying on the findings, this study outlines pathways for organizational policymakers to improve employee productivity in the labor-intensive industry in developing countries.
In this study, nano-scale microstructural evolution in 6061-T6 alloy after laser shock processing (LSP) was studied. 6061-T6 alloy plate was subjected to multiple LSP. The LSP treated area was characterized by X-ray diffraction and the microstructure of the samples was analyzed by transmission electron microscopy. Focused Ion Beam (FIB) tools were used to prepare TEM samples in precise areas. It was found that even though aluminum had high stacking fault energy, LSP yielded to formation of ultrafine grains and deformation faults such as dislocation cells, stacking faults. The stacking fault probability (PSF) was obtained in LSP-treated alloy using X-Ray diffraction. Deformation induced stacking faults lead to the peak position shifts, broadening and asymmetry of diffraction. XRD analysis and TEM observations revealed significant densities of stacking faults in LSP-treated 6061-T6 alloy. And mechanical properties of LSP-treated alloy were also determined to understand the hardening behavior with high concentration of structural defects.
Nickel Oxide (NiO) nanoparticles (NPs), doped with manganese (Mn) and cobalt (Co) at concentrations up to 8%, were synthesized using the composite hydroxide method (CHM). X-ray diffraction (XRD) analysis confirmed the formation of a cubic NiO structure, with no additional peaks detected, indicating successful doping. The average crystallite size was determined to range from 15 to 17.8 nm, depending on the dopant concentration. Scanning electron microscopy (SEM) images revealed mostly spherical, agglomerated particles, likely due to magnetic interactions. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the incorporation of Mn and Co into the NiO lattice, consistent with the XRD results. The dielectric properties exhibited a high dielectric constant at low frequencies, which can be attributed to ion jump orientation and space charge effects. The imaginary part of the dielectric constant decreased with increasing frequency, as it became harder for electrons to align with the alternating field at higher frequencies. Both the real and imaginary dielectric constants showed behavior consistent with Koop’s theory, increasing at low frequencies and decreasing at higher frequencies. Dielectric loss was primarily attributed to dipole flipping and charge migration. AC conductivity increased with frequency, and exhibited higher conductivity at high frequencies due to small polaron hopping. These co-doped NPs show potential for applications in solid oxide fuel cells.
During and after any disaster, a situation report (SITREP) is prepared, based on the Daily Incident Updates (DIU), as an initial decision support information base. It is observed that the decision support system and best practices are not optimized through the available formal reporting on disaster incidents. The rapidly evolving situation, misunderstood terms, inaccurate data and delivery delays of DIU are challenges to the daily SITREP. Multiple stakeholders stipulated with different tasks should be properly understood for the SITREP to initiate relevant response tasks. To fill this research gap, this paper identifies the weaknesses of the current practice and discusses the upgrading of the incident-reporting process using a freely available software tool, enabling further visualization, and producing a comprehensive timely output to share among the stakeholders. In this case, “Power-BI” (a data visualization software) is used as a 360-degree view of useful metrics—in a single place, with real-time updates while being available on all devices for operational decision-making. When a dataset is transformed into several analytical reports and dashboards, it can be easily shared with the target users and action groups. This article analyzed two sources of data, namely the Disaster Management Center (DMC) and the National Disaster Relief Service Center (NDRSC) of Sri Lanka. Senior managers of disaster emergencies were interviewed and explored social media to develop a scheme of best practices for disaster reporting, starting from just before the occurrence, and following the unfolding sequence of the disasters. Using a variety of remotely acquired imageries, rapid mapping, grading, and delineating impacts of natural disasters, were made available to concerned users.
Copyright © by EnPress Publisher. All rights reserved.