Mapping land use and land cover (LULC) is essential for comprehending changes in the environment and promoting sustainable planning. To achieve accurate and effective LULC mapping, this work investigates the integration of Geographic Information Systems (GIS) with Machine Learning (ML) methodology. Different types of land covers in the Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite images. Since the research area consists of a variety of landforms, there are issues with classification accuracy. These challenges are met by combining supplementary data into the GIS framework and adjusting algorithm parameters like selection of cloud free images and homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban areas and agricultural land based on their suitability with settlements or crops. The classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to track changes in land cover, supporting resource management, urban planning, and environmental preservation. The results highlight how sophisticated computational methods can enhance the accuracy of LULC evaluations.
This study examines the economic feasibility of the environment-friendly farmland use policy to improve water quality. Conventional highland farming, polluting the Han River basin in South Korea, can be converted into environment-friendly farming through land acquisition or application of pesticide-free or organic farming practices. We estimate the welfare measures of improvement in water quality and the costs of policy implementation for economic analysis. To estimate the economic benefit of improvement in water quality experienced by the residents residing in mid-and-downstream areas of the Han River, the choice experiment was employed with a pivot-style experimental design approach. In the empirical analysis, we converted the household perception for water quality grades into scientific water quality measures using Water Quality Standard to estimate the value of changes in water quality. To analyze the costs required to convert conventional highland farmlands into environment-friendly farmlands, we estimated the relevant cost of land acquisition and the subsidy necessary for farm income loss for organic agricultural practice. We find that the agri-environmental policy is economically viable, which suggests that converting conventional highland farming into environment-friendly farming would make the improvement in water quality visible.
This research investigates the safety status of water transport in Lake Towuti, South Sulawesi, employing the MICMAC and MACTOR methodologies to discern the factors that affect navigation safety and the interactions among the relevant stakeholders. The MICMAC analysis reveals that the effectiveness of sustainable transportation in Lake Towuti is significantly dependent on technical elements such as vessel certification, maintenance practices, and safety monitoring, alongside robust relationships among key entities like The South Sulawesi Class II Land Transportation Management Center (BPTD), The East Luwu District Transportation Office (Dishub), and the Timampu Port Service Unit (Satpel). When implementing the MICMAC-MACTOR model, it is essential to consider the technical implications of the proposed recommendations from the perspectives of social justice, environmental sustainability, and economic feasibility. The outcomes derived from the MICMAC and MACTOR assessments in Lake Towuti provide critical insights that can be utilized in other lakes across Indonesia, especially those that exhibit deficiencies in safety measures and adherence to inland water transport safety regulations.
This paper focuses on examining the relationship among organizational factor, work-related factor, psychological factor, personal factor and the commitment of oil palm smallholders toward Malaysian Sustainable Palm Oil (MSPO) certification. The study employed a descriptive research methodology and a structured survey instrument to gather data from oil palm smallholders (n = 441) through simple random sampling technique. Data analysis was conducted using SPSS and partial least square structural equation modeling (PLS-SEM) to test the proposed relationship. The findings reveal that organizational factors significantly impact the affective (β = 0.345, p < 0.05), normative (β = 0.424, p < 0.05), and continuance commitment (β = 0.339, p < 0.05) of oil palm smallholders. Additionally, work-related factors show a substantial effect on these same dimensions of commitment; affective (β = 0.277, p < 0.05), normative (β = 0.263, p < 0.05), and continuance (β = 0.413, p < 0.05). Psychological factors significantly impact the affective (β = 0.216, p < 0.05) and normative commitment (β = 0.146, p < 0.05), with no statistically significant influence on continuance commitment. Conversely, personal factors exhibit limited influence, affecting only continuance commitment (β = 0.104, p < 0.05) to a minor degree, with no statistically significant impact on affective and normative commitment. The present research is among the few empirical findings that have examined the oil palm smallholders’ commitment towards MSPO certification. By emphasizing the role of organizational and work-related factors, the study offers valuable insights for stakeholders within the oil palm sector, highlighting areas to enhance smallholder commitment toward sustainability standards. Consequently, this study contributes a unique perspective to the existing body of literature on sustainable practices in the oil palm industry.
Integrated risk value response is designed to reduce threats and increase opportunities, especially in terms of running the spun pile method innovation process in accordance with the ISO 56002:2019 standard. Implementing innovation can reduce risks and increase the competitiveness of the company. The method of making or producing spun piles is the research area examined in this study. Questionnaires were distributed to workers in precast concrete companies and most of them were involved in each spun pile production line in the company in order to identify the risk factors that existed in the production line for the spun pile manufacturing method. 30 respondents were workers from organizations in the positions of Director, Manager and Staff. The risk values and impacts are mapped for each dimension to the activity details and it is found that there are 5 high risks as dominant ones, mainly risks with codes R41, R10, R4, R37, and R36. Based on a survey, the highest risk of 30% was found in the stressing & spinning dimension, which is recommended for the innovation process. Innovation is conducted with 5 innovation processes, mainly identifying opportunities, creating concepts, validating concepts, developing solutions, and deploying solutions. Recommendations for improvements are made with preventive and corrective actions that must be taken from every aspect of the spun pile production method activities. Innovation recommendations are also proposed to monitor production activities in real-time utilizing existing information and communication technology. Handling of spun pile waste material must also be implemented with certain methods and produce products that add value for the company. Ultimately, to increase the company’s competitiveness by increasing assets, it is recommended to increase the company’s intangible assets. The company’s intangible assets encompass IPR ownership in the form of Patents and Copyrights.
Copyright © by EnPress Publisher. All rights reserved.