The low-carbon economy is the major objective of China’s economy, and its goal is to achieve sustainable economic development. The study enriches the literature on the relationship between digital Chinese yuan (E-CNY), low-carbon economy, AI trust concerns, and security intrusion. The rapid growth of Artificial Intelligence (AI) offered more ways to achieve a low-carbon economy. The digital Chinese yuan (E-CNY), based on the AI technique, has shown its nature and valid low-carbon characteristics in pilot cities of China, it will assume important responsibilities and become the key link. However, trust concerns about AI techniques result in a limitation of the scope and extent of E-CNY usage. The study conducts in-depth research from the perspective of AI trust concerns, explores the influence of E-CNY on the low-carbon economy, and discusses the moderating and mediating mechanisms of AI trust concerns in this process. The empirical data results showed that E-CNY positively affects China’s low-carbon economy, and AI trust concerns moderate the positive impact. When consumers with higher AI trust concerns use E-CNY, their feeling of security intrusion is also higher. It affects the growth of trading volume and scope of E-CNY usage. Still, it reduces the utility of China’s low-carbon economy. This study provides valuable management inspiration for China’s low-carbon economy.
Objective: This study synthesizes current evidence on the role of Artificial Intelligence (AI) and, where relevant, Open Science (OS) practices in enhancing Human Resource Management (HRM) performance. It focuses on recruitment processes, ethical considerations, and employee participation. Methodology: A systematic literature review was conducted in Scopus covering the period 2019–2024, following PRISMA guidelines. The initial search yielded 1486 records. After de-duplication and screening using Rayyan, 66 studies (≈ 4.4%) met the inclusion criteria, which targeted peer-reviewed works addressing AI-supported HR decision-making. A combined content and bibliometric analysis was performed in R (Bibliometrix) to identify thematic patterns and conceptual structures. Results: Analysis revealed four thematic clusters: 1) Implementation and employee participation emphasizing human-in-the-loop approaches and effective change management; 2) ethical challenges including algorithmic bias, transparency gaps, and data privacy risks; 3) data-driven decision-making delivering higher accuracy, fewer errors, and personalized recruitment and performance assessment; 4) operational efficiency enabling faster workflows and reduced administrative workloads. AI tools consistently improved selection quality, while OS practices promoted transparency and knowledge sharing. Implications: The successful adoption of AI in HRM requires employee engagement, strong ethical safeguards, and transparent data governance. Future research should address the long-term cultural, organizational, and well-being impacts of AI integration, as well as its sustainability.
Copyright © by EnPress Publisher. All rights reserved.