Performance Management is a major concern to various stakeholders in Education System, it is considered to be key driver to improve school effectiveness and learning quality. However, the complexity of education Systems, has made it challenging to apply an effective PM model. This study paper introduces a maturity model with six dimensions, fifteen Capability Areas and forty-two Best-Practices to assess education systems’ organizational capacity for performance management. It provides deep insights into their structural and functional characteristics and serves as a framework for decision-makers to identify and implement missing practices while enhancing existing ones. The maturity model was developed following the Design Science Research methodology to ensure both rigor and relevance. A bottom-up approach guided its design, integrating insights from extensive literature reviews and lessons learned from benchmark countries. The evaluation process employed a qualitative approach, using focus groups with a carefully selected cohort of academics, experts, and practitioners. The Moroccan case study serves as part of the “Reflection and Learning” phase, providing an initial test for the model and paving the way for further empirical research. Future studies will aim to test, refine, and extend the model, facilitating its application across diverse educational contexts.
Climate change is an important factor that must be considered by designers of large infrastructure projects, with its effects anticipated throughout the infrastructure’s useful life. This paper discusses how engineers can address climate change adaptation in design holistically and sustainably. It offers a framework for adaptation in engineering design, focusing on risk evaluation over the entire life cycle. This approach avoids the extremes of inaction and designing for worst-case impacts that may not occur for several decades. The research reviews case studies and best practices from different parts of the world to demonstrate effective design solutions and adjustment measures that contribute to the sustainability and performance of infrastructure. The study highlights the need for interdisciplinary cooperation, sophisticated modeling approaches, and policy interventions for developing robust infrastructure systems.
Building cooling load depends on heat gains from the outside environment. Appropriate orientation and masonry materials play vital roles in the reduction of overall thermal loads buildings. A net-zero energy building performance has been analyzed in order to ascertain the optimum orientation and wall material properties, under the climatic conditions of Owerri, Nigeria. Standard cooling load estimation techniques were employed for the determination of the diurnal interior load variations in a building incorporating renewable energy as the major energy source, and compared with the situation in a conventionally powered building. The results show a 19.28% reduction in the building’s cooling load when brick masonry was used for the wall construction. It was observed that a higher heat gain occurred when the building faced the East-West direction than when it was oriented in the North-South direction. Significant diurnal cooling loads variation as a result of radiation through the windows was also observed, with the east facing windows contributing significantly higher loads during the morning hours while the west facing windows contributed higher amounts in the evening. The economic analysis of the net-zero energy building showed an 11.63% reduction in energy cost compared to the conventional building, with a 7-year payback period for the use of Solar PV systems. Therefore, the concept of net-zero energy building will not only help in energy conservation, but also in cost savings, and the reduction of carbon footprint in the built environment.
With the progress of information technology, especially the widespread use of artificial intelligence technology, it has shown an important role in promoting economic and social development. Art and design in universities is a new discipline that combines modern technology with humanities and art. Only by emphasizing the development of science and technology, adapting to the requirements of the times, and closely integrating humanities and art with science and technology, can we gradually expand the educational channels for cultivating composite and innovative talents. Effectively organizing different types of scientific research activities, building a sound and comprehensive education system, plays an important role in adjusting teaching relationships, innovating teaching models, enhancing students' professional and comprehensive qualities, and improving their academic performance and employment competitiveness.
Copyright © by EnPress Publisher. All rights reserved.