Before the formal construction of a building, it is necessary to conduct an effective survey of the engineering geology, hydrogeology, and other contents within the construction area. The survey work is not only an important part of the early stage of engineering construction for engineering management personnel, but also an important factor in ensuring safety and stability during the construction process. Therefore, in order to effectively avoid various geological risks during the construction process or after the completion of the building, the preliminary engineering geological survey work is of great significance. In the process of engineering geological exploration, hydrogeological issues are also important exploration projects. This article will explore and study hydrogeological issues, analyze the water physical properties of rock and soil, and the impact of hydrogeological issues on the project, and then propose effective measures to do well in engineering geological exploration.
The article presents an answer to the current challenge about needs to form methodological approaches to the digital transformation of existing industrial enterprises (EIE). The paper develops a hypothesis that it is advisable to carry out the digital transformation of EIE based on considering it as a complex technical system using model-based system engineering (MBSE). The practical methodology based on MBSE for EIE digital representation creation are presented. It is demonstrated how different system models of EIE is created from a set of entities of the MBSE approach: requirements—unctions—components and corresponding matrices of interconnections. Also the principles and composition of tasks for system architectures creation of EIE digital representation are developed. The practical application of proposed methodology is illustrated by the example of an existing gas distribution station.
The rapid shift to online learning during COVID-19 posed challenges for students. This investigation explored these hurdles and suggested effective solutions using mixed methods. By combining a literature review, interviews, surveys, and the analytic hierarchy process (AHP), the study identified five key challenges: lack of practical experience, disruptions in learning environments, condensed assessments, technology and financial constraints, and health and mental well-being concerns. Notably, it found differences in priorities among students across academic years. Freshmen struggled with the absence of hands-on courses, sophomores with workload demands, and upperclassmen with mental health challenges. The research also discussed preferred strategies for resolution, emphasizing independent learning methods, managing distractions, and adjusting assessments. By providing tailored insights, this study aimed to enhance online learning. Governments and universities should support practical work, prioritize student well-being, improve digital infrastructure, adapt assessments, foster innovation, and ensure resilience.
Three-dimensional (3D) bioprinting is a promising technological approach for various applications in the biomedical field. Natural polymers, which comprise the majority of 3D printable “bioinks”, have played a crucial role in various 3D bioprinting technologies during the layered 3D manufacturing processes in the last decade. However, the polymers must be customized for printing and effector function needs in cancer, dental care, oral medicine and biosensors, cardiovascular disease, and muscle restoration. This review provides an overview of 3D bio-printed natural polymers—commonly employed in various medical fields—and their recent development.
Copyright © by EnPress Publisher. All rights reserved.