This paper applies Nida's dynamic equivalence theory to the appreciation of Hardy's masterpiece Tess of the D 'Urbervilles, discusses the translation of the meaning and spirit of the source text in terms of dialects, idioms and annotations from the perspective of functional equivalence theory, and further explores whether the spirit and value felt by the readers of the target text is dynamically equivalent to that felt by the readers of the source text. Finally, this paper shows the clever application of this theory and the determination to promote cultural exchange through Tess of the D 'Urbervilles.
Global transformational processes associated with the geopolitical fragmentation of the world, changes in supply chains, and the emergence of threats to food, energy, logistics security, etc. have impacted the increase in the freight traffic volumes through the Ukraine-European Union (Ukraine-EU) land border section. In this context, the transport and logistics infrastructure on this section of the border was inadequate for the growing demand for international freight transport, leading to huge economic, social, and environmental damage to all participants in foreign trade. The aim of this paper is to study the efficiency of the functioning of the transport and logistics infrastructure on the Ukraine-EU border section. The taxonomy used in the paper made it possible to look into economic, security, geopolitical, logistics, transport, legal, and political factors shaping the freight traffic volumes, structure, and routes; their key trends and impact on the generation of freight traffic are described. Statistical analysis of freight traffic by border sections and with respect to border crossing points allowed the identification of bottlenecks in the functioning of the transport and logistics infrastructure and outlining ways to address them. The results of the study will be helpful both to researchers working on the issues of freight transport and to policymakers involved in transport and border infrastructure development.
Due to the short cost-effective heat transportation distance, the existing geothermal heating technologies cannot be used to develop deep hydrothermal-type geothermal fields situated far away from urban areas. To solve the problem, a new multi-energy source coupling a low-temperature sustainable central heating system with a multifunctional relay energy station is put forward. As for the proposed central heating system, a compression heat pump integrated with a heat exchanger in the heating substation and a gas-fired water/lithium bromide single-effect absorption heat pump in the multifunctional relay energy station are used to lower the return temperature of the primary network step by step. The proposed central heating system is analyzed using thermodynamics and economics, and matching relationships between the design temperature of the return water and the main line length of the primary network are discussed. The studied results indicate that, as for the proposed central heating system, the cost-effective main line length of the primary network can approach 33.8 km, and the optimal design return temperature of the primary network is 23 ℃. Besides, the annual coefficient of performance and annual energy efficiency of the proposed central heating system are about 3.01 and 42.7%, respectively.
Broccoli has been consumed around the world in various ways; either raw, blanched, frozen, dehydrated or fermented; however, functional foods and nutraceuticals are currently being designed and marketed from broccoli, through the extraction of compounds such as sulforaphane, which according to several studies and depending on its bioavailability has a protective effect on some types of cancer. Likewise, several food technologies are reported to seek to offer innovative foods to increasingly careful and critical consumers, ensuring that they retain their nutritional and sensory attributes even after processing and that they are also safe. In this sense, studies on the effect of processing on compounds of interest to health are of great relevance. Therefore, this article presents an overview on the study of traditionally consumed broccoli and the design of new products from the use of agro-industrial residues that, due to their high content of fiber and fitochemical compounds, can benefit the quality of life of the human population.
The electro-magnetic (EM) waves transmitted through a thin object with fine structures are observed by a microsphere located above the thin object. The EM radiation transmitted through the object produces both evanescent waves, which include information on the fine structures of the object (smaller than a wavelength), and propagating waves, which include the large image of the object (with dimensions larger than a wavelength). The super-resolutions are calculated by using the Helmholtz equation. According to this equation, evanescent waves have an imaginary component of the wavevector in the z direction, leading the components of the wavevector in the transversal directions to become very large so that the fine structures of the object can be observed. Due to the decay of the evanescent waves, only a small region near the contact point between the thin object and the microsphere is effective for producing the super resolution effects. The image with super-resolution can be increased by a movement of the microsphere over the object or by using arrays of microspheres. Both propagating and evanescent waves arrive at the inner surface of the microsphere. A coupling between the transmitted EM waves and resonances produced in the dielectric sphere, possibly obtained by the Mie method, leads to a product of the EM distribution function with the transfer function. While this transfer function might be calculated by the Mie method, it is also possible to use it as an experimental function. By Fourier transform of the above product, we get convolution between the EM spatial modes and those of the transfer function arriving at the nano-jet, which leads the evanescent waves to become propagating waves with effective very small wavelengths and thus increase the resolution.
Copyright © by EnPress Publisher. All rights reserved.