Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
In the realm of modern education, the integration of technology has emerged as a powerful catalyst for transforming traditional classrooms into dynamic and engaging learning environments. This paper provides a concise overview of the multifaceted ways in which technology contributes to enhanced classroom engagement.
This study explores the relationship between GDP growth, unemployment rate, and labor force participation rate in the Gulf Cooperation Council (GCC) countries from 1990 to 2018. Furthermore, the study incorporates control factors such as government spending, trade openness, and energy use into the regression equation. We used panel dynamic ordinary least squares (DOLS) and Fully Modified Ordinary Least Squares (FMOLS) estimators to investigate the relationships between variables in this investigation. The econometric technique accounts for nonstationary, endogeneity bias and cross-sectional dependencies between country-year observations. Cointegration was found among GDP growth, unemployment rate, and labor force participation. Long-term, the unemployment rate has a statistically significant negative effect on economic growth in the GCC nations. Meanwhile, the labor force participation rate significantly influences economic expansion in the long term. The expansion of government expenditures and international trade reduces economic growth. Alternatively, it is discovered that energy consumption has a substantial and positive effect on economic expansion. Okun’s rule and the unidirectional causality from economic growth to unemployment indicate that the primary cause of unemployment in GCC nations is a failure to adequately expand their economies. When developing economic strategies to reduce unemployment, policymakers are particularly interested in determining whether or not economic development and the unemployment rate are cointegrated.
Copyright © by EnPress Publisher. All rights reserved.