This study explores the determinants of control loss in eating behaviors, employing decision tree regression analysis on a sample of 558 participants. Guided by Self-Determination Theory, the findings highlight amotivation (β = 0.48, p < 0.001) and external regulation (β = 0.36, p < 0.01) as primary predictors of control loss, with introjected regulation also playing a significant role (β = 0.24, p < 0.05). Consistent with Self-Determination Theory, the results emphasize the critical role of autonomous motivation and its deficits in shaping self-regulation. Physical characteristics, such as age and weight, exhibited limited predictive power (β = 0.12, p = 0.08). The decision tree model demonstrated reliability in explaining eating behavior patterns, achieving an R2 value of 0.39, with a standard deviation of 0.11. These results underline the importance of addressing motivational deficits in designing interventions aimed at improving self-regulation and promoting healthier eating behaviors.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
The purpose of this study is to predict the frequency of mortality from urban traffic injuries for the most vulnerable road users before, during and after the confinement caused by COVID-19 in Santiago de Cali, Colombia. Descriptive statistical methods were applied to the frequency of traffic crash frequency to identify vulnerable road users. Spatial georeferencing was carried out to analyze the distribution of road crashes in the three moments, before, during, and after confinement, subsequently, the behavior of the most vulnerable road users at those three moments was predicted within the framework of the probabilistic random walk. The statistical results showed that the most vulnerable road user was the cyclist, followed by motorcyclist, motorcycle passenger, and pedestrian. Spatial georeferencing between the years 2019 and 2020 showed a change in the behavior of the crash density, while in 2021 a trend like the distribution of 2019 was observed. The predictions of the daily crash frequencies of these road users in the three moments were very close to the reported crash frequency. The predictions were strengthened by considering a descriptive analysis of a range of values that may indicate the possibility of underreporting in cases registered in the city’s official agency. These results provide new elements for policy makers to develop and implement preventive measures, allocate emergency resources, analyze the establishment of policies, plans and strategies aimed at the prevention and control of crashes due to traffic injuries in the face of extraordinary situations such as the COVID-19 pandemic or other similar events.
In order to explore the application of the new integrated intelligent spore capture system developed in China in the prediction of cucumber downy mildew and cucumber powdery mildew, the main working parameters of the integrated intelligent spore capture system, such as the presence or absence of air cutting head, the height of air collection port and the time of air collection, were optimized by identifying the morphology of captured spores in the case of natural disease in the field. The relationship between the disease index of cucumber downy mildew and cucumber powdery mildew in greenhouse and the amount of spores captured was analyzed through the dynamic monitoring of disease and spores. The results show that when the air cutting head is not installed, the height of the air collection port is 70 cm, and the period of 10: 00–10: 30 was beneficial to the capture of spores. The disease index of cucumber downy mildew and cucumber powdery mildew had a strong positive correlation with the total amount of spores captured for 7 consecutive days. Continuous monitoring of cucumber downy mildew sporangia and rapid increase in the number is a predictor of the occurrence or rapid increase of cucumber downy mildew. The conidia of cucumber powdery mildew were not detected before the disease onset, and the number of conidia captured was still small at the peak of the disease. The research shows that the integrated intelligent spore capture system is suitable for the prediction of cucumber downy mildew, but there are still some problems in the prediction of cucumber powdery mildew.
Preserving roads involves regularly evaluating government policy through advanced assessments using vehicles with specialized capabilities and high-resolution scanning technology. However, the cost is often not affordable due to a limited budget. Road surface surveys are highly expected to use low-cost tools and methods capable of being carried out comprehensively. This research aims to create a road damage detection application system by identifying and qualifying precisely the type of damage that occurs using a single CNN to detect objects in real time. Especially for the type of pothole, further analysis is to measure the volume or dimensions of the hole with a LiDAR smartphone. The study area is 38 province’s representative area in Indonesia. This research resulted in the iRodd (intelligent-road damage detection) for detection and classification per type of road damage in real-time object detection. Especially for the type of pothole damage, further analysis is carried out to obtain a damage volume calculation model and 3D visualization. The resulting iRodd model contributes in terms of completion (analyzing the parameters needed to be related to the road damage detection process), accuracy (precision), reliability (the level of reliability has high precision and is still within the limits of cost-effective), correct prediction (four-fifths of all positive objects that should be identified), efficient (object detection models strike a good balance between being able to recognize objects with high precision and being able to capture most objects that would otherwise be detected-high sensitivity), meanwhile, in the calculation of pothole volume, where the precision level is established according to the volume error value, comparing the derived data to the reference data with an average error of 5.35% with an RMSE value of 6.47 mm. The advanced iRodd model with LiDAR smartphone devices can present visualization and precision in efficiently calculating the volume of asphalt damage (potholes).
Photovoltaic systems have shown significant attention in energy systems due to the recent machine learning approach to addressing photovoltaic technical failures and energy crises. A precise power production analysis is utilized for failure identification and detection. Therefore, detecting faults in photovoltaic systems produces a considerable challenge, as it needs to determine the fault type and location rapidly and economically while ensuring continuous system operation. Thus, applying an effective fault detection system becomes necessary to moderate damages caused by faulty photovoltaic devices and protect the system against possible losses. The contribution of this study is in two folds: firstly, the paper presents several categories of photovoltaic systems faults in literature, including line-to-line, degradation, partial shading effect, open/close circuits and bypass diode faults and explores fault discovery approaches with specific importance on detecting intricate faults earlier unexplored to address this issue; secondly, VOSviewer software is presented to assess and review the utilization of machine learning within the solar photovoltaic system sector. To achieve the aims, 2258 articles retrieved from Scopus, Google Scholar, and ScienceDirect were examined across different machine learning and energy-related keywords from 1990 to the most recent research papers on 14 January 2025. The results emphasise the efficiency of the established methods in attaining fault detection with a high accuracy of over 98%. It is also observed that considering their effortlessness and performance accuracy, artificial neural networks are the most promising technique in finding a central photovoltaic system fault detection. In this regard, an extensive application of machine learning to solar photovoltaic systems could thus clinch a quicker route through sustainable energy production.
Copyright © by EnPress Publisher. All rights reserved.