High-quality development in China requires higher vocational education, scientific and technological innovation, and sustainable economic development. The spatial distribution patterns of these factors show higher levels in the east and coastal areas compared to the west and inland regions, emphasizing the need for coupling coordination with the social economy. This study examines the impact of sustainable economic development on the coupling coordination degree using the spatial Durbin model. The results show a positive promotion and spillover effect, with regional variations. The main factors affecting the difference in coupling coordination are the amount of technology market contracts, fiscal expenditure on science and technology, patent application authorizations, tertiary industry output value, and the number of R&D institutions. According to the grey prediction model, the coupling coordination degree is expected to increase from 2022 to 2025, but achieving primary coordination may still be challenging in some areas. Therefore, strategies that utilize regional characteristics for coordinated development should be developed to improve the level of coupling coordination and create a mutually beneficial environment.
In order to promote the application of noise map in high-speed railway noise management, the high-speed railway noise map drawing technology based on the combination of noise prediction model and geographic information system (GIS) is studied. Firstly, according to the distribution characteristics of noise sources and line structure characteristics of high-speed railway, the prediction model of multi equivalent sound sources and the calculation method of sound barrier insertion loss of high-speed railway are optimized; secondly, a three-dimensional geographic information model of a high-speed railway is built in GIS software, and the railway noise prediction technology based on the model is developed again; then, the noise of discrete nodes is calculated, and the continuous noise distribution map is drawn by spatial interpolation. The research results show that the comparison error between the noise map of a high-speed railway drawn by this technology and the measured results is less than 1 dB (A), which verifies the accuracy and practicality of the high-speed railway noise map, and can be used as a reference for the railway noise management department to formulate noise control countermeasures.
The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Every plant is significantly important in tackling climate change, including Makila (Litsea angulata BI) an endemic wood species found in the forest of Moluccas Provinces. Therefore, this research aimed to examine the role of the Makila plant in tackling climate change by measuring biomass content using constructing an allometric equation. The method used was a destructive sampling, where 40 units of Makila plant at the sampling level were felled, and sorted according to root, stem, branch, rating, and leaf segments. Each segment was weighed both at wet and after drying, followed by a classical assumption test in data processing, and the formulation of an allometric equation. The regression model was examined for normality and suitability in predicting independent variables, ensuring there were no issues with multicollinearity, heteroscedasticity, and autocorrelation. The results yielded a multiple linear regression, namely: Y = −1131.146 + 684.799X1 + 4.276X2, where Y is biomass, X1 is the diameter, and X2 is the tree height. Based on the results of the t-test: variable X1 partially affected Y while variable X2 partially had no effect on Y. The F-test indicated that variables X1 and X2 jointly affected Y with R Square: 0.919 or 91.9% and the rest was influenced by other unexplored factors. To simplify biomass prediction and field measurement, a regression equation that used only 1 independent variable, namely tree diameter, was used for the experiment. Allometric equation only used 1 variable, Y = −1,084,626 + 675,090X1, where X1 = tree diameter, Y = Total biomass with R = 0.957, and R2 = 0.915. Considering the potential for time, cost, and energy savings, as well as ease of measurement in the field, the biomass of young Makila trees was simply predicted by measuring the tree diameter and avoiding the height. This method used the strong relationship between biomass, plant diameter, and height to facilitate the estimation of biomass content accurately by entering the results of field measurements.
Background: According to the 2023 World Economic Forum report, the impact of Artificial Intelligence (AI) and automation on the job market was more significant than originally projected. Although 2018 research forecasted significant job losses balanced by job creation, current data indicates otherwise. Between 2023 and 2027, it is anticipated that 69 million new jobs will be created due to advancements in AI, however, this will be offset by the loss of 83 million jobs, leading to a net decrease of 14 million jobs worldwide. Roles related to AI, digitalization, and sustainability, such as AI specialists and renewable energy engineers are expected to grow, while those in clerical and administrative sectors are most at risk of decline. This shift underscores the need for reskilling and adapting to evolving fields, as nearly 44% of workers skills will face disruption by 2027. The demand for analytical thinking, technological literacy, and adaptability will grow as companies increasingly adopt frontier technologies. Objectives: (1) identify key variables influencing adaptability of college graduates in Indonesia, (2) quantify the strength of relationships between these variables to understand the combined effect on graduate adaptability. The research also aims to (3) develop theoretical and practical recommendations to strengthen ICIL policy and equip students with the relevant skills needed to thrive in an ever-changing job market. Methodology: The research focuses on predicting future employment trends, adaptability, and learning agility (LA), along with the implications for improving the Independent Campus Independent Learning (ICIL) policy. It focused on the significant unemployment rate among college graduates, along with the lack of research on the relationship between job change predictions, graduates’ adaptability, and the impact on graduates’ general well-being. The mixed-method strategy with quantitative analysis was used to conduct this research with data collected from 284 ICIL participants through online survey. The gathered data was evaluated using Structural Equation Modeling (SEM) with Lisrel version 10. Results: The result showed that job trend projections significantly influence responsiveness, which demonstrated a robust association between employment trend predictions and LA. Responsiveness significantly influenced learning agility which indicated no significant direct association between job trend projections and graduate adaptability. Conclusion: The research emphasized the need to consider adaptability as a concept with multiple dimensions. It proposed incorporating these factors into strategies for education and human resources development in order to better equip graduates for the demands of a constantly changing work market. Unique contribution: This research focused on adaptability as a multifaceted concept that consist of the ability to forecast job trends, be sensitive, and possess LA. It offered a deeper understanding of the relationships between these variables as discussed in the human resources literature. Technology, corporate culture, and training played a critical role in connecting employment trend prediction with the ability to respond effectively. Key recommendation: Institutions should implement a comprehensive approach to the development of human resources, with emphasis on fostering critical thinking, analytical abilities, and the practical application of information. By employing these tactics, higher education institutions may effectively equip graduates with both academic proficiency and the ability to adapt and thrive in quickly changing organizational environments, leading to the production of robust and versatile workers.
Introduction: With the adoption of the rural rehabilitation strategy in recent years, China’s rural tourist industry has entered a golden age of growth. Due to the lack of management and decision-support systems, many rural tourist attractions in China experience a “tourist overload” problem during minor holidays or Golden Week, an extended vacation of seven or more consecutive days in mainland China formed by transferring holidays during a specific holiday period. This poses a severe challenge to tourist attractions and relevant management departments. Objective: This study aims to summarize the elements influencing passenger flow by examining the features of rural tourist attractions outside China’s largest cities. Additionally, the study will investigate the variations in the flow of tourists. Method: Grey Model (1,1) is a first-order, single-variable differential equation model used for forecasting trends in data with exponential growth or decline, particularly when dealing with small and incomplete datasets. Four prediction algorithms—the conventional GM(1,1) model, residual time series GM(1,1) model, single-element input BP neural network model, and multi-element input BP network model—were used to anticipate and assess the passenger flow of scenic sites. Result: The multi-input BP neural network model and residual time series GM(1,1) model have significantly higher prediction accuracy than the conventional GM(1,1) model and unit-input BP neural network model. A multi-input BP neural network model and the residual time series GM(1,1) model were used in tandem to develop a short-term passenger flow warning model for rural tourism in China’s outskirts. Conclusion: This model can guide tourists to staggered trips and alleviate the problem of uneven allocation of tourism resources.
Copyright © by EnPress Publisher. All rights reserved.