This work centres on the contribution of the Nigerian government’s Anchor Borrowers’ Programmes on rice production in the country. This study employs quantitative methodology and with a primary objective to dissect the efficacy of modern farming techniques facilitated by the Anchor Borrowers’ Programmes (ABP), evaluates the advantages and disadvantages inherent in rice production under this programme. Conducted within the agricultural landscape of Ebonyi State, Nigeria, this study adopts a cross-sectional survey approach to gauge the symbiotic relationship between rice production and the ABP. Targeting a cohort of rice smallholder farmers who have directly benefited from the program, the work employs stratified random sampling and purposeful selection techniques to guarantee comprehensive representation within a population of 400 respondents. This study utilizes the mixed-methods approach to data collection, including structured questionnaires administered to rice farmers in Ebonyi State, Nigeria. This research tests hypotheses by utilising statistical tools such as regression analysis. The outcome of this study underscores the imperative for continued support and refinement of the Anchor Borrowers’ Programme. Moreover, it elucidates the pivotal role of financial institutions and agricultural lending agencies in equipping farmers with the requisite skills and resources. Ultimately, this study affirms the crucial role of modern farming methodologies in propelling rice production within Ebonyi State, Nigeria. It recommends that young school leavers, especially those in the rural areas should also be encouraged to venture into agriculture through schemes such as the ABP, bank financing and innovative financing so as to help the Federal Government achieve its economic diversification drive.
This study explores the integration of data mining, customer relationship management (CRM), and strategic management to enhance the understanding of customer behavior and drive revenue growth. The main goal is the use of application of data mining techniques in customer analytics, focusing on the Extended RFM (Recency, Frequency, Monetary Value and count day) model within the context of online retailing. The Extended RFM model enhances traditional RFM analysis by incorporating customer demographics and psychographics to segment customers more effectively based on their purchasing patterns. The study further investigates the integration of the BCG (Boston Consulting Group) matrix with the Extended RFM model to provide a strategic view of customer purchase behavior in product portfolio management. By analyzing online retail customer data, this research identifies distinct customer segments and their preferences, which can inform targeted marketing strategies and personalized customer experiences. The integration of the BCG matrix allows for a nuanced understanding of which segments are inclined to purchase from different categories such as “stars” or “cash cows,” enabling businesses to align marketing efforts with customer tendencies. The findings suggest that leveraging the Extended RFM model in conjunction with the BCG matrix can lead to increased customer satisfaction, loyalty, and informed decision-making for product development and resource allocation, thereby driving growth in the competitive online retail sector. The findings are expected to contribute to the field of Infrastructure Finance by providing actionable insights for firms to refine their strategic policies in CRM.
Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great significance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the concept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest ecological quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the application of vertical structural parameters and the interaction between forest ecological quality and ecological function.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
Kampar Regency, as the largest pineapple producer in Riau Province, has yet to provide significant added value for the surrounding SMEs. The limitations in technology and innovation, infrastructure support, and market access have prevented this potential from being optimally utilized. A Technopark can provide the necessary facilities and infrastructure to enhance production efficiency, innovation, and product quality, thus driving local economic growth. The objective of this study is to identify and determine potential locations for the development of a pineapple-based Technopark in Kampar Regency. This study is crucial as a fundamental consideration in selecting the technopark location and assessing the effectiveness and success of the technopark area. The method used in this study is AHP-GIS to analyze relevant parameters in the site selection process for the technopark area. Parameters considered in this study include slope, land use, availability of raw materials, accessibility of roads, access to water resources, proximity to universities, market access, population density, and landfill. The analysis results indicate that the percentage of land highly suitable for the technopark location is 0.78%, covering an area of 8943 hectares. Based on the analysis, it is recommended that potential locations for the development of a pineapple SMEs-based technopark in Kampar Regency are dispersed in Tambang District, encompassing three villages: Rimbo Panjang, Kualu Nenas and Tarai Bangun. The findings of this study align with the spatial planning of Kampar Regency.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Copyright © by EnPress Publisher. All rights reserved.