The objective of this study is to explore the relationship between changing weather conditions and tourism demand in Thailand across five selected provinces: Chonburi (Pattaya), Surat Thani, Phuket, Chiang Mai, and Bangkok. The annual data used in this study from 2012 to 2022. The estimation method is threshold regression (TR). The results indicate that weather conditions proxied by the Temperature Humidity Index (THI) significantly affect tourism demand in these five provinces. Specifically, changes in weather conditions, such as an increase in temperature, generally result in a decrease in tourism demand. However, the impact of weather conditions varies according to each province’s unique characteristics or highlights. For example, tourism demand in Bangkok is not significantly affected by weather conditions. In contrast, provinces that rely heavily on maritime tourism, such as Chonburi (Pattaya), Phuket, and Surat Thani, are notably affected by weather conditions. When the THI in each province rises beyond a certain threshold, the demand for tourism in these provinces by foreign tourists decreases significantly. Furthermore, economic factors, particularly tourists’ income, significantly impact tourism demand. An increase in the income of foreign tourists is associated with a decrease in tourism in Pattaya. This trend possibly occurs because higher-income tourists tend to upgrade their travel destinations from Pattaya to more upscale locations such as Phuket or Surat Thani. For Thai tourists, an increase in income leads to a decrease in domestic tourism, as higher incomes enable more frequent international travel, thereby reducing tourism in the five provinces. Additionally, the study found that the availability and convenience of accommodation and food services are critical factors influencing tourism demand in all the provinces studied.
Quartz sand was used as bed material in a small fluidized bed reactor with 1 kg/h feed. Corn straw powder with particle size of 20–40 mesh, 40–60 mesh, 60–80 mesh and 80–120 mesh was used as raw material for rapid pyrolysis at reaction temperatures of 400 °C, 450 °C, 500 °C and 550 °C. The bio-oil obtained after liquefaction of pyrolysis gas was analyzed. The variation trend of bio-oil composition in pyrolysis of corn straw powder with different reaction temperatures and raw material sizes was compared. The results show that: (1) the content of 3-hydroxyl-2-phenyl-2-acrylic acid in bio-oil increases with the decrease of raw material particle size, but it is less at 450 °C; (2) with the increase of reaction temperature, the content of hydroxyacetaldehyde in bio-oil increases at first and then decreases: the content of hydroxyacetaldehyde in bio-oil is the highest at 500 °C when the particle size is 20–40 mesh, and the highest at 450 °C with the other three particle sizes. Compared with other particle sizes, raw material with the particle size of 60–80 mesh is not conducive to the formation of aldehyde compounds; (3) the reaction temperature of 500 °C and the particle size of 60–80 mesh of raw materials are more conducive to the formation of phenolic compounds in bio-oil; (4) the ester compounds with particle size of 20–40 mesh in bio-oil is 20% higher than that of other particle sizes; (5) the reaction temperature and the particle size of raw materials had no significant effect on the formation of ketones, alcohols and alkane compounds in bio-oils.
Considering the application of the polymer electrolyte membrane fuel cell (PEMFC), the separator thickness plays a significant role in determining the weight, volume, and costs of the PEMFC. In addition, thermal management, i.e., temperature distribution is also important for the PEMFC system to obtain higher performance. However, there were few reports investigating the relation between the temperature profile and the power generation characteristics e.g., the current density distribution of PEMFC operated at higher temperatures (HT-PEMFC). This paper aims to study the impact of separator thickness on the temperature profile and the current density profile of HT-PEMFC. The impact of separator thickness on the gases i.e., H2, O2 profile of HT-PEMFC numerically was also studied using CFD software COMSOL Multiphysics in the paper. In the study, the operating temperature and the relative humidity (RH) of the supply gas were varied with the separator thickness of 2.0 mm, 1.5 mm, and 1.0 mm, respectively. The study revealed that the optimum thickness was 2.0 mm to realize higher power generation of HT-PEMFC. The heat capacity of the separator thickness of 2.0 mm was the biggest among the separators investigated in this study, resulting in the dry-up of PEM and catalyst layer was lower compared to the thinner separator thickness. It also clarified the effects of separator thickness of profile gases, e.g., O2, H2O, and current density profile became larger under the higher temperature and the lower RH conditions.
This study analyses the dynamic development of soybean (Glycine max (L.) Merr.) breeding in Russia, particularly examining its historical development, status, and future predictions. With the global demand for vegetable protein rising, understanding Russia’s potential contribution becomes crucial. This research provides valuable insights, offering precise data that may be unfamiliar to international researchers and the private sector. The authors trace the history of soybean selection in Russia, emphasizing its expansion from the Far East to other regions in Russia. The expansion is primarily attributed to the pioneering work of Soviet breeder V. A. Zolotnitsky and the development of the soybean variety in the Amur region in the 1930s. The study highlights the main areas of soybean variety originators, with approximately 40% of foreign varieties registered. The Krasnodar and Amur regions emerge as critical areas for breeding soybean varieties. In Russia, the highest yield potential of soybeans is in the Central Federal District. At the same time, the varieties registered in the Volga Federal District have higher oil content, and the Far Eastern Federal District has high protein content in the registered soybean varieties. The research outlines the state’s pivotal role in supporting soybean breeding and fostering a competitive market with foreign breeders. The study forecasts future soybean breeding development and the main factors that can influence the industry.
Copyright © by EnPress Publisher. All rights reserved.