In today’s fast-paced digital world, generative AI, especially OpenAI’s ChatGPT, has become a game-changing technology with significant effects on education. This study examines public sentiment and discourse surrounding ChatGPT’s role in higher education, as reflected on social media platform X (formerly Twitter). Employing a mixed-methods approach, we conducted a thematic analysis using Leximancer and Voyant Tools and sentiment analysis with SentiStrength on a dataset of 18,763 tweets, subsequently narrowed to 5655 through cleaning and preprocessing. Our findings identified five primary themes: Authenticity, Integrity, Creativity, Productivity, and Research. The sentiment analysis revealed that 46.6% of the tweets expressed positive sentiment, 38.5% were neutral, and 14.8% were negative. The results highlight a general openness to integrating AI in educational contexts, tempered by concerns about academic integrity and ethical considerations. This study underscores the need for ongoing dialogue and ethical frameworks to responsibly navigate AI’s incorporation into education. The insights gained provide a foundation for future research and policy-making, aiming to enhance learning outcomes while safeguarding academic values. Limitations include the focus on English-language tweets, suggesting future research should encompass a broader linguistic and platform scope to capture diverse global perspectives.
To gain a deep understanding of maintenance and repair planning, investigate the weak points of the distribution network, and discover unusual events, it is necessary to trace the shutdowns that occurred in the network. Many incidents happened due to the failure of thermal equipment in schools. On the other hand, the most important task of electricity distribution companies is to provide reliable and stable electricity, which minimal blackouts and standard voltage should accompany. This research uses seasonal time series and artificial neural network approaches to provide models to predict the failure rate of one of the equipment used in two areas covered by the greater Tehran electricity distribution company. These data were extracted weekly from April 2019 to March 2021 from the ENOX incident registration software. For this purpose, after pre-processing the data, the appropriate final model was presented with the help of Minitab and MATLAB software. Also, average air temperature, rainfall, and wind speed were selected as input variables for the neural network. The mean square error has been used to evaluate the proposed models’ error rate. The results show that the time series models performed better than the multi-layer perceptron neural network in predicting the failure rate of the target equipment and can be used to predict future periods.
The trilateral defense and security pact between Australia, the United Kingdom, and the United States has strong impact to the security dynamics in the Indo-Pacific area. This agreement entails a strengthened alliance between Australia and enhanced military collaboration with the United States and the United Kingdom resulting in regional volatility. This paper aims to examine the AUKUS (Australia–United Kingdom–United States Partnership) agreement and the resulting ensuing instability in the Indo-Pacific region, specifically from Indonesia’s perspective. The focus of the research is on the interplay between Indonesia’s diplomacy capability and the military functions of the Indonesian Navy as security policy. This study employs a qualitative approach to delve into in-depth insights into the evolution of AUKUS in the Indo-Pacific region, which triggered a series of responses from many countries subsequent to the announcement of the establishment of the AUKUS Defense Pact. The AUKUS establishment simply reinforces the notion that geopolitical tensions are pulling the area apart. The influence of the AUKUS-China war can jeopardize regional stability since the US and China continuously demonstrate the supremacy of their armaments in order to dissuade one another. The AUKUS-China contest has had a highly adverse impact on Indonesia. This article argues that the Indonesian Navy’s diplomatic prowess is crucial because it has the potential to play a big influence in the Indo-Pacific region’s international political dynamics concerning the South China Sea. Furthermore, the Indonesian Navy must proactively prepare for potential armed conflicts in Indonesian territorial seas by developing a comprehensive maritime policy during times of peace, leveraging its geographical advantages.
Preserving roads involves regularly evaluating government policy through advanced assessments using vehicles with specialized capabilities and high-resolution scanning technology. However, the cost is often not affordable due to a limited budget. Road surface surveys are highly expected to use low-cost tools and methods capable of being carried out comprehensively. This research aims to create a road damage detection application system by identifying and qualifying precisely the type of damage that occurs using a single CNN to detect objects in real time. Especially for the type of pothole, further analysis is to measure the volume or dimensions of the hole with a LiDAR smartphone. The study area is 38 province’s representative area in Indonesia. This research resulted in the iRodd (intelligent-road damage detection) for detection and classification per type of road damage in real-time object detection. Especially for the type of pothole damage, further analysis is carried out to obtain a damage volume calculation model and 3D visualization. The resulting iRodd model contributes in terms of completion (analyzing the parameters needed to be related to the road damage detection process), accuracy (precision), reliability (the level of reliability has high precision and is still within the limits of cost-effective), correct prediction (four-fifths of all positive objects that should be identified), efficient (object detection models strike a good balance between being able to recognize objects with high precision and being able to capture most objects that would otherwise be detected-high sensitivity), meanwhile, in the calculation of pothole volume, where the precision level is established according to the volume error value, comparing the derived data to the reference data with an average error of 5.35% with an RMSE value of 6.47 mm. The advanced iRodd model with LiDAR smartphone devices can present visualization and precision in efficiently calculating the volume of asphalt damage (potholes).
Accurate prediction of US Treasury bond yields is crucial for investment strategies and economic policymaking. This paper explores the application of advanced machine learning techniques, specifically Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models, in forecasting these yields. By integrating key economic indicators and policy changes, our approach seeks to enhance the precision of yield predictions. Our study demonstrates the superiority of LSTM models over traditional RNNs in capturing the temporal dependencies and complexities inherent in financial data. The inclusion of macroeconomic and policy variables significantly improves the models’ predictive accuracy. This research underscores a pioneering movement for the legacy banking industry to adopt artificial intelligence (AI) in financial market prediction. In addition to considering the conventional economic indicator that drives the fluctuation of the bond market, this paper also optimizes the LSTM to handle situations when rate hike expectations have already been priced-in by market sentiment.
An extensive assessment index system was developed to evaluate the integration of industry and education in higher vocational education. The system was designed using panel data collected from 31 provinces in China between 2016 and 2022. The study utilized the entropy approach and coupled coordination degree model to examine the temporal and spatial changes in the level of growth of the integration of industry and education in higher vocational education, as well as the factors that impact it. In order to examine how the integration of industry and education in higher vocational education develops over time and space, as well as the factors that affect it, we utilized spatial phasic analysis, Tobit regression model, and Dagum’s Gini coefficient. The study’s findings suggest that between 2016 and 2022, the integration of industry and education in higher vocational education showed a consistent improvement in overall development. Nevertheless, there are still significant regional differences, with certain areas showing limited levels of integration, while the bulk of regions are either in a state of low integration with high clustering or low integration with low clustering. Most locations showed either a “low-high” or “low-low” level of agglomeration, indicating a significant degree of spatial concentration, with a clear trend of higher concentration in the east and lower concentration in the west. The progress of industrial structure and the degree of regional economic development have a substantial impact on the amount of integration of industry and education in higher vocational education. There is a notable increase in the amount of integration between industry and education in higher vocational education, which has a favorable effect. Conversely, the local employment rate has a substantial negative effect on this integration. Moreover, the direct influence of industrial structure optimization is restricted. The Gini coefficient of the development level of integration of industry and education in higher vocational education exhibits a slight rising trend. Simultaneously, there is a varying increase in the Gini coefficient inside the group and a decrease in the Gini coefficient between the groups. The disparities in the level of integration between Industry and Education in the provincial area primarily stem from inter-group variations across the locations. To promote the integration of industry and education in higher vocational education, it is recommended to strengthen policy support and resource allocation, address regional disparities, improve professional configuration, and increase investment in scientific and technological innovation and talent development.
Copyright © by EnPress Publisher. All rights reserved.