In this study, ‘Xinli No. 3’, ‘Shengli rootstock’, ‘Shenli rootstock’ and ‘Shengzhen No. 1’ were used as rootstock, and ‘Jinchun No. 39’ cucumber was used as scion to study the effects of different rootstock on the yield and quality of grafted cucumber, and to select high quality rootstock suitable for cucumber grafting. Different rootstock affected the survival rate, phenology, the height of plant, stem diameter, growth potential, yield and quality of cucumber grafting. Among them, the survival rate of ‘Shenli rootstock’ grafted cucumber is the highest, and the growth of ‘Shengzhen No. 1’ grafted cucumber is relatively the strongest. There was no significant difference in fruit tuber, melon edge, thorn color and pulp crispness between self-rooted seedling (CK) and each rootstock grafting combination. The average yield of ‘Xinli No. 3’ grafted cucumber plot was not significantly different from that of self-rooted seedlings (CK). The length of ‘Shenli rootstock’ and ‘Shengli rootstock’ grafted cucumber was significantly higher than that of self-rooted seedlings (CK), and the length of ‘Shengzhen No. 1’ Grafted Cucumber was significantly higher than that of self-rooted seedlings (CK). The contents of vitamin C and soluble protein of ‘Shengli rootstock’, ‘Shenli rootstock’ and ‘Shengzhen No. 1’ grafted cucumber were significantly higher than those of self-rooted seedlings (CK), and the contents of soluble sugar were lower than those of self-rooted seedlings (CK). Therefore, ‘Shengzhen No. 1’ and ‘Jinchun No. 39’ have strong compatibility with cucumber. As rootstocks, the grafted cucumber plants not only have strong growth potential and high yield, but also significantly increase the content of soluble protein and vitamin C.
This study was carried out at the Teaching and Research Farm of Landmark University, Omu-Aran. Treatments consisted of 3 levels of cocoa pod husk ash (0, 2 and 4 tonnes CPHA ha-1), 3 levels of cocoa pod husk powder (0, 2 and 4 tonnes CPHP ha-1), NPK and the control. The experiment was laid out in a Randomized Complete Block Design (RCBD) replicated four times. The following parameters were taken plant height, number of leaves (at 2, 3, and 4 weeks after sowing), total plant weight, root weight, leaf weight, roots girth and roots length. Data collected were subjected to Analysis of Variance (ANOVA) Using S.A.S, 2000. Treatment means were compared using Duncan Multiple Range Test (DMRT) at 0.05 level of probability. Results showed that chemical analysis of cocoa pod ash and powder contained plant nutrients as N, P, K, Ca, Mg and some other micronutrients in varying proportions. Application of CPHA 4 + CPHP 2 gave higher values for all the vegetative parameters. The implication of this study is that high level of cocoa pod husk powder in combination with high level of cocoa pod husk ash is detrimental to radish cultivation. In the same vein, the nutrition of radish was incomplete when NPK fertilizer was applied. It can therefore be recommended that the use of combined application of cocoa pod ash and cocoa pod powder at CPHA4 + CPHP2 was sufficient for the cultivation of radish (Raphanus sativus) in the study area as it compete favorably with application of NPK fertilizer.
Organomineral fertilizer is used to improve and ameliorate the supply of nutrients in soils. Right and adequate application of fertilizers are determinants of its nutrient supply efficiency, which in turn enhances the vegetative growth and yield of cucumber. Field experiments were conducted at the Research Farm of the Federal University of Agriculture, Abeokuta, Nigeria, to assess the effects of variety and rate of organomineral fertilizer on cucumber growth and yield. Trials were conducted from June to August 2019 and repeated from September to November 2019. The cultivars were Poinsett, Greengo, and Monalisa. The rates of organomineral fertilizer were 0, 2.5, or 5.0 tons. ha−1. The treatments were replicated three times. Cucumber vegetative characters, yield, and yield components were studied. ‘Greengo’ produced the most leaves, followed by ‘Monalisa’; ‘Poinsett’ produced the least. Application of 5.0 tons. ha−1 organomineral fertilizer produced the longest vines and fruits. ‘Greengo’ had the earliest days to 50% flowering, followed by ‘Monalisa’; ‘Poinsett’ had the most days to 50% flowering. Plants treated with an application of 5.0 tons. ha−1 organomineral fertilizer attained 50% flowering in 29 days, but in 30 days with an application of 2.5 tons. ha−1 organomineral fertilizer; the control treatment attained 50% flowering in 33 days. Application of 5.0 tons. ha−1 organomineral fertilizer produced the longest fruits, thicker fruit diameter, and highest fruit yield compared with 2.5 and 0 tons. ha−1 of organomineral fertilizer treatments. The Greengo variety with application of 5.0 tons. ha−1 of organomineral fertilizer is recommended for optimum growth and yield in south western Nigeria.
This paper investigates the elements affecting dividend yield in developing Southeast Asian countries—more specifically, Thailand, Malaysia, and Singapore. Examined here are the roles of financial information including debt to equity ratio, free cashflows, property, plant, and equipment (PPE) and total sales with controlling factors of size, institutional ownership, and firm age using both short-run and long-run analytical frameworks including the Error Correction Model and Engle and Granger’s approach. The results reveal different trends in the three nations. Higher debt and free cashflows lower dividend yield in Thailand; institutional shareholders benefit from maintaining greater dividend payouts. Aging companies in Malaysia are more likely to pay more dividends while rising revenues are linked to smaller short-term payouts. Leveraged and asset-heavy companies are more likely to keep paying dividends in Singapore. These discoveries have important ramifications for investors and business management trying to maximize dividend policies and improve shareholder value in developing economies.
Vegetable production is an important sector of economy for farmers in Nepal. The analysis was carried out to explore the trends in vegetable production sector in Nepal along with the recent trend of some major vegetables in terms of area, production and yield. The time series data from 1977/78 to 2016/17 (40 years) of vegetables production and 5 years data (2011/12 - 2015/16) of major vegetables were collected from reliable source and analysis was done through Microsoft Excel. The results show that between 1977/78 and 2016/17 the area under vegetables cultivation has jumped by 222.8% while production is increased by 728.21% and productivity is increased by 156.6% during this course. The result also reveals that during the period of 5 years (2011/12 - 2015/16), solanaceous and cruciferous vegetables has an increasing trend in area, production and yield except for the area under cultivation for eggplant (declined by 5.2%) and for radish (declined by 6.0%) respectively while cucurbitaceous vegetables has increasing trend in area and production but an declining trend in yield except for the yield of cucumber (increased by 15.8%). However, the trend of other major vegetables is seen highly fluctuating over the years.
Kinnow production is hampered due to the lack of micronutrient applications such as zinc (Zn), iron (Fe), and manganese (Mn), which play a significant role in the metabolic activities of the plant, affecting yield and quality. The farmers of the region use mineral micronutrient fertilizers, but it leads to phytotoxicity due to unoptimized fertilizer application dose. In the present investigation, an attempt has been made to optimize the Zn, Mn, and Fe minerals dose as tank mix foliar application for improvement of fruit yield, quality, and uptake of nutrients. The twelve combinations of different doses of zinc sulphate, manganese sulphate, and ferrous sulphate fertilizers replicated three times were tested at kinnow orchards established at Krishi Vigyan Kendra, Bathinda, Punjab, India. The data revealed that the fruit drop was significantly low in the treatment F12 (43.4%) (tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 ) compared to control treatment. The fruit yield per tree was significantly higher in the treatment F12 compared to untreated control. The juice percentage was also recorded higher in treatment F12 as compared to control, and the juice percentage improved by 2.6%. The leaf nutrient analysis also revealed translocation of higher amount of nutrient from leaf to fruit under optimized supply of micronutrient. Thus, the application of tank mix spray of 0.3% ZnSO4 + 0.2% MnSO4 + 0.1% FeSO4 may be used for better fruit yield and quality.
Copyright © by EnPress Publisher. All rights reserved.