Desert environments face the challenge of promoting sustainable tourism while balancing economic growth with cultural and environmental preservation. In the context of rapid global tourism expansion, effective destination management becomes crucial for positive economic impact and long-term preservation. This study aims to identify key factors influencing the sustainability of tourism. It explores the interactions between local stakeholders, the supply of tourism products and services, and tourism governance. Utilizing structural equation modeling through the PLS-SEM method, data was collected from 150 stakeholders in desert environments. The findings reveal that the involvement of local tourism stakeholders and the supply of tourism products and services significantly impact sustainable tourism in the desert environment. However, we observe a lack of influence between tourism governance and sustainable desert tourism. The novelty of the study lies in the identification of promotional factors for sustainable desert tourism. The originality of this study lies in its in-depth exploration of the mechanisms for promoting sustainable tourism.
A smart city focuses on enhancing and interconnecting facilities and services through digital technology to offer convenient services for both people and businesses. The basic infrastructure of smart cities consists of modern technologies such as the Internet of Things (IoT), cloud computing and artificial intelligence. These urban areas utilize different networks, such as the Internet and IoT, to share real-time information, improving convenience for the inhabitants. However, the reliance of smart cities on modern technologies exposes them to a range of organized, diverse, and sophisticated cyber threats. Therefore, prioritizing cybersecurity awareness and implementing appropriate measures and solutions are essential to protect the privacy and security of citizens. This study aims to identify cyber threats and their impact on smart cities, as well as the methods and measures required for key areas such as smart government, smart healthcare, smart mobility, smart environment, smart economy, smart living, and smart people. Furthermore, this study seeks to evaluate previous research in this field, establish necessary policies to mitigate these threats, and propose an appropriate model for the infrastructure associated with IT networks in smart cities.
The Human Development Index, which accounts for both net foreign income and the total value of goods and services generated domestically, illustrates how income becomes less significant as Gross National Income (GNI) rises by using the logarithm of income. South Africa ranks 109th out of 189 countries in the Human Development Index (HDI) within the Brazil, Russia, India, China and South Africa (BRICS) economic bloc, raising long-term sustainability concerns. The study explores the relationship between economic, demography, policy indicators and human development in South Africa. South Africa’s unique status as a developing country within the BRICS economic group, alongside its lengthy history of racial discrimination, calls for a sophisticated approach to understanding Human Development. Existing research considered economic, demography, policy indicators independently; the gap of understanding their interconnection and long-term effects in the South African contexts exists. The study addresses the gap by using Autoregressive-Distributed Lag (ARDL) approach to investigate the short-term and the long-term relationship between economic, demography, policy indicators and human development in South Africa. By discovering these links, the study hopes to provide useful insights for policymakers seeking to promote sustainable human development in South Africa. The findings indicate that growth in GDP is a key factor in the HDI since it shows that there are more financial resources available for human development. By discovering these links, the study hopes to provide useful insights for policymakers seeking to promote sustainable human development in South Africa.
Central Sulawesi has been grappling with significant challenges in human development, as indicated by its Human Development Index (HDI). Despite recent improvements, the region still lags behind the national average. Key issues such as high poverty rates and malnutrition among children, particularly underweight prevalence, pose substantial barriers to enhancing the HDI. This study aims to analyze the impact of poverty, malnutrition, and household per capita income on the HDI in Central Sulawesi. By employing panel data regression analysis over the period from 2018 to 2022, the research seeks to identify significant determinants that influence HDI and provide evidence-based recommendations for policy interventions. Utilizing panel data regression analysis with a Fixed Effect Model (FEM), the study reveals that while poverty negatively influences with HDI, underweight prevalence is not statistically significant. In contrast, household per capita income significantly impacts HDI, with lower income levels leading to declines in HDI. The findings emphasize the need for comprehensive policy interventions in nutrition, healthcare, and economic support to enhance human development in the region. These interventions are crucial for addressing the root causes of underweight prevalence and poverty, ultimately leading to improved HDI and overall well-being. The originality of this research lies in its focus on a specific region of Indonesia, providing localized insights and recommendations that are critical for targeted policy making.
The rapid expansion of smart cities has led to the widespread deployment of Internet of Things (IoT) devices for real-time data collection and urban optimization. However, these interconnected systems face critical cybersecurity risks, including data tampering, unauthorized access, and privacy breaches. This paper proposes a blockchain-based framework designed to enhance the security, integrity, and resilience of IoT data in smart city environments. Leveraging a private blockchain, the system ensures decentralized, tamper-proof data storage, and transaction verification through digital signatures and a lightweight Proof of Work consensus mechanism. Smart contracts are employed to automate access control and respond to anomalies in real time. A Python-based simulation demonstrates the framework’s effectiveness in securing IoT communications. The system supports rapid transaction validation with minimal latency and enables timely detection of anomalous patterns through integrated machine learning. Evaluations show that the framework maintains consistent performance across diverse smart city components such as transportation, healthcare, and building security. These results highlight the potential of the proposed solution to enable secure, scalable, and real-time IoT ecosystems for modern urban infrastructures.
Copyright © by EnPress Publisher. All rights reserved.