Despite the unpleasant conditions, such as lower and insufficient wages, higher working hours, longer length of service, total absence of casual workers union, indirect employment aided by the bank’s top directors, etc., casual workers are highly committed in performing their roles and achieving their organizational goals. Neoliberal theory and Equity theory were used for guidance in this study. The study employed qualitative analysis style; Total of ten banks were selected as a sample of the study involving sixty participants who were all casual workers; twenty-four female and the remaining thirty-six were male, have been selected using purposeful sampling. Content analysis was used as the method of data analysis. The study shows some of the functions performed by the casual workers of Nigerian banks include quick client service, amenability to work, client care services, opening of accounts, marketing, and timely task completion. Others include furnishing prompt client service, being prepared to work, and finishing assignments on schedule., thus, the study concludes that despite the outstanding performance of casual workers in achieving their organizational pretensions, they’re largely exploited. The recommendation of the study is that employment should be grounded on fair stipend, safety at work and protection for casual workers, in short, work should encompass fairness, equivalency, and freedom of association. Also, Payment of the benefit accumulated by the casual workers should be linked directly between casual workers and their associations.
Scholars widely agree that modular technologies can significantly improve environmental sustainability compared to traditional building methods. There has been considerable debate about the viability of replacing traditional cast-in-place structures with modular construction projects. The primary purpose of this study is to determine the feasibility of using modular technology for construction projects in island areas. Thus, it is necessary to investigate the potential problems and suitable solutions associated with modular building project implementation. This study is accomplished through the use of qualitative and quantitative methods. It systematically examines desk research based on the wide academic literature and real case studies, collating secondary data from government files, news articles, professional blogs, and interviews. This research identifies several important barriers to the use of modular construction projects. Among the issues are the complexity of stakeholder engagement, limited practical skills and construction methodologies, and a scarcity of manufacturing capacity specialised for modular components. Fortunately, these unresolved challenges can be mitigated through fiscal incentives and governmental regulations, induction training programmes, efficient management strategies, and adaptive governance approaches. As a result, the findings support the feasibility of starting and advancing modular building initiatives in island areas. Project developers will likely be more willing to embrace and commit resources to initiate modular building projects. Additional studies can be undertaken to acquire the most recent first-hand data for detailed validation.
An experiment was carried out to investigate the effect of different organic nutrient solutions and day of harvest on growth parameters, biomass and chemical composition of hydroponically grown sorghum red fodder. The experiment was a 3 × 2 factorial design comprising of 3 nutrient solutions (cattle, poultry and rabbit) and 2 harvesting regimes (8th and 10th day). Cattle, poultry and rabbit dungs were collected fresh and processed into nutrient solutions. Sorghum red seeds were treated, planted on trays, and irrigated twice per day with organic nutrient solution according to the treatments. Growth parameters which were investigated included fodder mat thickness, seedling height, leaf length and width, number of leaves, fresh and dry matter yield; and proximate composition. The results showed that sorghum red fodder irrigated with cattle manure nutrient solution (NS) harvested at 10 days was higher in all, except one (fodder mat thickness) of the growth parameters considered. The crude protein (CP) was highest and similar (P > 0.05) for Poultry NS harvested at 8 and 10 days, and Cattle NS at 10 days (13.13%, 12.67%, and 12.69% respectively). The ash content also favored Cattle NS at 10 days. Cattle NS at 10 days harvest was significantly (P < 0.05) the highest (7.00%), but comparable (P > 0.05) with Rabbit NS at 10 days for NDF. Fresh and DM yields were highest for Cattle harvested at 10 and 8 days respectively. The study recommends Cattle NS as hydroponic organic NS for sorghum red as it enhances fresh and dry matter yields, and nutritive values.
The experiments were carried out to validate an analytical method and to examine the impact of various decontaminating solutions on the removal of acephate residues from okra. Acephate analysis was performed using HPLC-UV, and sample extraction was done using the QuEChERS method. Method validation encompassed assessing specificity, linearity, precision, accuracy, as well as limits of detection (LOD) and quantification (LOQ). The method exhibited excellent linearity with R2 values ≥ 0.99. LOD and LOQ were determined at 0.5 µg mL−1 and 2 µg mL−1, respectively. The results indicated average recoveries ranging from 80.2% to 83.3% with a % RSD below 5%. The decontamination procedures include rinsing with running tap water, soaking in lukewarm water, 2% CH3COOH, 1% NaCl, 5% NaHCO3, 0.01% KMnO4, and in commercially available decontamination products such as nimwash, veggie clean, and arka herbiwash for a duration 10 minutes. Among all the treatments, soaking in nimwash solution showed remarkable effectiveness (96.75% removal), followed by veggie clean (94.97% removal) and arka herbiwash (95.80% removal). Washing okra samples in running tap water was found to be the least effective compared to other treatments.
The electro-magnetic (EM) waves transmitted through a thin object with fine structures are observed by a microsphere located above the thin object. The EM radiation transmitted through the object produces both evanescent waves, which include information on the fine structures of the object (smaller than a wavelength), and propagating waves, which include the large image of the object (with dimensions larger than a wavelength). The super-resolutions are calculated by using the Helmholtz equation. According to this equation, evanescent waves have an imaginary component of the wavevector in the z direction, leading the components of the wavevector in the transversal directions to become very large so that the fine structures of the object can be observed. Due to the decay of the evanescent waves, only a small region near the contact point between the thin object and the microsphere is effective for producing the super resolution effects. The image with super-resolution can be increased by a movement of the microsphere over the object or by using arrays of microspheres. Both propagating and evanescent waves arrive at the inner surface of the microsphere. A coupling between the transmitted EM waves and resonances produced in the dielectric sphere, possibly obtained by the Mie method, leads to a product of the EM distribution function with the transfer function. While this transfer function might be calculated by the Mie method, it is also possible to use it as an experimental function. By Fourier transform of the above product, we get convolution between the EM spatial modes and those of the transfer function arriving at the nano-jet, which leads the evanescent waves to become propagating waves with effective very small wavelengths and thus increase the resolution.
Copyright © by EnPress Publisher. All rights reserved.