In this paper, a series of Li3V2(PO4)3/C composite nanofibers is prepared by a facile and environmentally friendly electrospinning method and calcined under different temperatures. The LVP nanofiber calcined under 900 ℃ exhibits the best electrochemical performance. The bicontinuous morphologies of LVP/CNF are the fibers shrunk and the LVP crystals simultaneously grown. At the range of 3.0–4.3 V, LVP/CNF obtained under 900 ℃ delivers the initial capacity of 135 mAh/g, close to the theoretical capacity of LVP. Even at high current density, the sample of LVP/CNF still presents good electrochemical performance.
The Olefin aromatization is an important method for the upgrade of catalytic cracking (FCC) gasoline and production of fuel oil with high octane number. The nano-ZSM-5 zeolite was synthesized via a seed-induced method, a series of modified nano-ZSM-5 zeolite samples with different Ga deposition amount were prepared by Ga liquid deposition method. The XRD, N2 physical adsorption, SEM, TEM, XPS, H2-TPR and Py-IR measurements were used to characterize the morphology, textural properties and acidity of the modified ZSM-5 zeolites. The catalytic performance of the Hexene-1 aromatization was evaluated on a fixed-bed microreactor. The effects of Ga modification on the physicochemical and catalytic performance of nano-ZSM-5 zeolites were investigated. The Ga species in the modified nano-ZSM-5 zeolites mainly exist as the form of Ga2O3 and GaO+, which provide strong Lewis acid sites. The aromatics selectivity over Ga modified nano-ZSM-5 zeolite in the Hexene-1 aromatization was significantly increased, which could be attributed to the improvement of the dehydrogenation activity. The selectivity for aromatics over the Ga4.2/NZ5 catalyst with suitable Ga deposition amount reached 55.4%.
Copyright © by EnPress Publisher. All rights reserved.