This article is a study of the institutional governance of farmers in Bukit Batu District, Bengkalis Regency using the concept of Society 5.0 and the governance paradigm for analysis in peat area studies. This study aims to determine the form of institutional governance of smallholder agriculture in peat areas and determine the truth of the influence of community economic management and development indicators on Society 5.0, which results from empirical studies in the field. This study uses the mixed methods method, which combines quantitative and qualitative data analysis to measure the truth of information. The results of the study illustrate that the question study first finds existing forms of institutional governance walk, however still passive; this is caused by constraints of knowledge management plant horticulture in the region peat, utilization process nutrients, and management techniques group sustainable farming in aspect regulation government and empowerment company around through CSR; on the question, it has been furthermore found that management variables and community economic development have a positive influence on Society 5.0. This study uses quantitative analysis and calculation results from the SPSS analysis test to support this conclusion. From this study, it formulated recommendation from the synergy between economic development and management of peat areas to socio-economic and environmental impacts that must be considered by interested stakeholders, as well as maximizing function technology in making it easy to manage horticulture plants in peat areas as a form of Society 5.0 to minimize behind.
Among the dental composites, Urethane Dimethacrylate (UDMA) is commonly used as a component in treating oral complications. Many molecular dynamics approaches are used to understand the behaviour of the material at room temperature as well as at higher temperatures to get a better insight after comparison with experimental values at the atomic level. There are three critical physical properties associated with these components, like abrasive wear, viscosity, and moduli, which play an essential role in determining the treatment and can be computed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), the general-purpose quantum chemistry program package (ORCA), and the General Utility Lattice Program (GULP) molecular dynamics methods. A radial distribution function plot is generated using visual molecular dynamics (VMD) for UDMA and BisGMA. A comparison of these parameters with BisGMA, another component of dental composites, along with experimental results, is carried out in the present investigation. Further, since radiation also matters for settling the materials in dental treatment, we have computed absorption spectra from 200 nm to 800 nm using LAMMPS/ORCA.
Definitive diagnosis of Craniosynostosis (CS) with computed tomography (CT) is readily available, however, exposure to ionizing radiation is often a hard stop for parents and practitioners. Lowering head CT radiation exposure helps mitigate risks and improves diagnostic utilization. The purpose of the study is to quantify radiation exposure from head CT in patients with CS using a ‘new’ (ultra-low dose) protocol; compare prior standard CT protocol; summarize published reports on cumulative radiation doses from pediatric head CT scans utilizing other low-dose protocols. A retrospective study was conducted on patients undergoing surgical correction of CS, aged less than 2 years, between August 2014 and February 2022. Cumulative effective dose (CED) in mSv was calculated, descriptive statistics were performed, and mean ± SD was reported. A literature search was conducted describing cumulative radiation exposure from head CT in pediatric patients and analyzed for ionizing radiation measurements. Forty-four patients met inclusion criteria: 17 females and 27 males. Patients who obtained head CT using the ‘New’ protocol resulted in lower CED exposure of 0.32 mSv ± 0.07 compared to the prior standard protocol at 5.25 mSv ± 2.79 (p < 0.0001). Five studies specifically investigated the reduction of ionizing radiation from CT scans in patients with CS via the utilization of low-dose CT protocols. These studies displayed overall CED values ranging from 0.015 mSv to 0.77 mSv. Our new CT protocol resulted in 94% reduction of ionizing radiation. Ultra-low dose CT protocols provide similar diagnostic data without loss of bone differentiation in CS and can be easily incorporated into the workflow of a children’s hospital.
The mining sector faces a complex dilemma as an economic development agent through social upliftment in places where mining corporations operate. Resource extraction is destructive and non-renewable, making it dirty and unsustainable. To ensure corporate sustainability, this paper examines the effects of knowledge management (KM), organizational learning (OL), and innovation capability (IC) on Indonesian coal mining’s organizational performance (OP). We used factor and path analysis to examine the relationships between the above constructs. After forming a conceptual model, principal component analysis validated the factor structure of a collection of observed variables. Path analysis examined the theories. The hypothesized framework was confirmed, indicating a positive association between constructs. However, due to mining industry peculiarities, IC does not affect organizational performance (OP). This study supports the importance of utilizing people and their relevant skills to improve operational performance. The findings have implications for managers of coal mining enterprises, as they suggest that KM and OL are critical drivers of OP. Managers should focus on creating an environment that facilitates knowledge sharing and learning, as this will help improve their organizations’ performance.
Iran has one of the oldest civilizations in the world, and many elements of today’s urban planning and design have their origins in the country. However, mass country-city migration from the 1960s onwards brought enormous challenges for the country’s main cities in the provision of adequate housing and associated services, resulting in a range of sub-standard housing solutions, particularly in Tehran, the capital city. At the same time, and notably in the past decade, Iran’s main cities have had significant involvement in the smart city movement. The Smart Tehran Program is currently underway, attempting to transition the capital towards a smart city by 2025. This study adopts a qualitative, inductive approach based on secondary sources and interview evidence to explore the current housing problems in Tehran and their relationship with the Smart Tehran Program. It explores how housing has evolved in Tehran and identifies key aspects of the current provision, and then assesses the main components of the Smart Tehran Program and their potential contribution to remedying the housing problems in the city. The article concludes that although housing related issues are at least being raised via the new smart city technology infrastructure, any meaningful change in housing provision is hampered by the over centralized and bureaucratic political system, an out of date planning process, lack of integration of planning and housing initiatives, and the limited scope for real citizen participation.
Copyright © by EnPress Publisher. All rights reserved.