This paper assesses South Africa’s massive infrastructure drive to revive growth and increase employment. After years of stagnant growth, this is now facing a deep economic crisis, exacerbated by the COVID-19 pandemic. This drive also comes after years of weak infrastructure investment, widening the infrastructure deficit. The plan outlines a R1 trillion investment drive, primarily from the private sector through the Infrastructure Fund over the next 10 years (Government of South Africa, 2020). This paper argues that while infrastructure development in South Africa is much-needed, the emphasis on de-risking for private sector buy-in overshadows the key role the state must play in leading on structurally transforming the economy.
Horticulture is a widespread activity in family farming in the Transamazonian region—Pará, with emphasis on production aimed at the family’s own consumption. The lettuce cultivar Vanda (Lactuca sativa L.) represents a significant part of this production, which prioritizes the use of internal labor. The main objective of this work was to evaluate the development of lettuce CV Vanda grown in beds using organic compost and chemical fertilization (NPK). The criteria considered to evaluate this performance were: Root system development, plant height and total fresh mass production. The best averages in relation to root development occurred in the plots cultivated with organic compost in the proportion of 5 kg/m2, due to its characteristics as a fertilizer and soil conditioner. The cultivation with the use of NPK provided the best averages in relation to the production of total fresh mass and plant height, results that were mainly attributed to the extra supply of nitrogen in the covering fertilization, which consisted in the addition of 10 g urea per square meter via soil. Statistical analysis showed no statistically significant difference regarding plant height for both treatments. And in relation to root development, the difference was statistically significant.
Open pitaya (Stenocereus thurberi) flowers were marked at 10, 20, 30 and 40 days after floration (DAF). When fruit were formed, they were collected from each of the dates with the objective of evaluating physical, physiological and quality changes before and after harvest. In fruits with different DAF, the analyses of fruit size (diameter and length), weight, density, firmness, color in pulp and peel (L*, a* and b*), respiration rate (CO2) and ethylene production were carried out. In the case of ripe and overripe fruit, in addition to the variables mentioned above, pH, percentage of total soluble solids TSS and total acidity (% citric acid equivalents) were evaluated. Fruit with 40 DAF were stored for up to 14 days at 25 ℃ and 80% RH to evaluate daily changes in respiration rate and ethylene production. It was found that during development the fruit tended to grow more in length than in diameter. In color, the best indicators of changes during fruit development were the parameters L* and b* for peel and for flesh L* and a*. For firmness in pitaya fruits, no significant differences were found with the methodology used. Changes in ethylene production and respiration rate during storage and development showed the usual behavior of climacteric fruits. Pitaya fruits with 40 FDD presented quality characteristics similar to those accepted by the consumer for this type of fruit. It is concluded that it is possible to evaluate the different stages of development in DDF of pitaya fruit based on the changes of the color space variables L*, a* and b*, in addition to the fact that the fruit follows the classical climacteric behavior.
With the purpose of strengthening the knowledge and prevention of landslide disasters, this work develops a methodology that integrates geomorphological mapping with the elaboration of landslide susceptibility maps using geographic information systems (GIS) and the multiple logistic regression method (MLR). In Mexico, some isolated works have been carried out with GIS to evaluate slope stability. However, to date, no practical and standardized method has been developed to integrate geomorphological maps with landslide inventories using GIS. This paper shows the analysis carried out to develop a multitemporal landslide inventory together with the morphometric analysis and mapping technique for the El Estado River basin where, selected as the study area, is located on the southwestern slope of the Citlaltepetl or Pico de Orizaba volcano. The geological and geomorphological factors in combination with the high seasonal precipitation, the high degree of weathering and the steep slopes predispose its surfaces to landslides. To assess landslide susceptibility, a landslide inventory map was prepared using aerial photographs, followed by geomorphometric mapping (altimetry, slopes and geomorphology) and field work. With this information, landslide susceptibility was modeled using multiple logistic regression (MLR) within a GIS platform and the landslide susceptibility map was obtained.
Introduction: Growth, yield and quality of okra (Abelmoschus esculentus (L.) Moench) are related to fertilizer application, being nitrogen (N) the most outstanding, due to its direct relationship with photosynthesis and vegetative growth of the plant. Objective: The objective was to evaluate the agronomic and productivity characteristics of okra as a function of N dose. Materials and methods: The study was conducted at the experimental area of Campus Gurupi, the Universidad Federal de Tocantins (UFT), Brazil, in two planting periods (autumn/winter and spring/summer). The experimental design used was randomized block design (RBD) with six treatments (50, 100, 150, 150, 200 and 250 kg N ha-1) and four replications. Urea was used as a source of N. The characteristics evaluated were: productivity, average fruit mass, height and plant chlorophyll index. Results: Productivity and plant height were superior in the fall/winter crop. Mean fruit mass and chlorophyll index were not influenced by planting time. For productivity, a linear response was obtained with increasing dose up to the limit of the N dose used (250 kg ha-1), with a mean value higher than 14 t of fruit. Mean mass and plant height responded linearly to increasing N dose. Nitrogen affected the chlorophyll index, with maximum values of 45.96 and 47.19, observed in the two evaluation periods. Conclusion: Planting time and N content in the soil interacted with plant height, being favorable in the period without precipitation. N influenced all the characteristics, demonstrating the importance of nitrogen fertilization in the development of okra plants.
Copyright © by EnPress Publisher. All rights reserved.